Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.25.0.dev20240831.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.25.0.dev20240831-cp312-cp312-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240831-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.25.0.dev20240831-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240831-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.25.0.dev20240831-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240831-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.25.0.dev20240831-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240831-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.25.0.dev20240831-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240831-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.25.0.dev20240831-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240831-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.25.0.dev20240831.tar.gz.

File metadata

  • Download URL: aim-3.25.0.dev20240831.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.25.0.dev20240831.tar.gz
Algorithm Hash digest
SHA256 babf2d735f2d27af45ba28f511ba9662e9e99550414aad6ab5ec8bf8238dd36a
MD5 ecd100d74632b7219f80ff420a61fc9e
BLAKE2b-256 9c62264bf50fc50f83288b9554ecded79e6be0dbf865ed34ee1486ca0d0b84ef

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 226fb539bc673fc0be2a18b5b9967be2ca58b96527b3f5a3081bd8a508cf23ba
MD5 5bc381f3b8dd72d67e68da2d41d8a5f8
BLAKE2b-256 c6c96929888c2727ab576b9d96af9aabd1aee6cb9359a6f3aa5f94e0db65bf65

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b3e5c10869c25a4a296fcabfc3cb624d9ff24bcf58c8805556965a09dda6b00
MD5 a3057025754d95ebf12704b6896ead52
BLAKE2b-256 082974d1d35703abd2981d343d943e3005c3174f3ee13c40a0237105df353e70

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b918bf9cd4973bde90ec6fe598943d35b32270b290abf1157a17f6358d30305c
MD5 56e0736f8cf5ee259a0ed20265f2e770
BLAKE2b-256 304df2461eeac35e3e30fbcf0d17c8845b828ccca2d23620f0b29d7d214c0d3e

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a3640c50b4b8be2af9ef07a69200f661d6ae3950f1940f3b6105a60819e406c6
MD5 cb9c97c3c0a37e021bad845ead5649be
BLAKE2b-256 fef2ecf91e47254e75e5557a4543bb5bcca92bc0da12d69bc044a94195fa0743

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 b00127cc775a5264fc721114eb048b13c3d10296facd6d10745e720da21c3969
MD5 25604901ec4bd7a49d3995bac0f3d47c
BLAKE2b-256 8c2e70f67645938d66cd62c8e7f1ec9757110849541cc221083c97a523a1bcd0

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48e486e50999d337ae8d34b77831fd33a566425d69c4ee5c9e1cb9fc15ea5ba1
MD5 7aa4fe19caa8c3db64c565ac0a68c917
BLAKE2b-256 62de233de66f45961773f3ae8f9a6036be6f8aa4c338918e3b3737336c3eac4f

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 92e047731e47d077de6a630d04b356e1113a3cd67e9bb063071a33c8ed61858f
MD5 a97830488b4d9303252fd47233512497
BLAKE2b-256 34344561dae71379a04fba8c0fbb01bb8e459f04d85619bf6353a3c2723fe81a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bd5e487f04301b95bf1feab4b5f0b05362ddad25c6bd535cd3b267dee1c699ed
MD5 018ec6feb98eb8b558c909721b8d6fd0
BLAKE2b-256 8da58d06dac7ce00d3614a6c9a966f00ff76e74c6d6fc5b12c97954a6cc1fbb4

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5c04c81304a0cd542ed7b3c089dd7616aa0fec87bab7cddd1a01828ef7317571
MD5 e4edab27523af113bc687b0abbc6c35b
BLAKE2b-256 35c691828716b4ed34eccaf0ba2412aee83059bbad0e5013d520de03c70783d9

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 fb73243f64ecaa587a291b2e49f19e295d155261dbb1ea25b190268fa0f4a0a1
MD5 fa34340447258d3d29a39664801fdb1e
BLAKE2b-256 aabbe5443cd2331ae22e690c965c2ddadcf211848b2ddd89f1f7d3ff86618178

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a95c60de913662bd74f4bc6fa4fa92a781aa0e9b372de5ffe6448e931b95b2d2
MD5 c43c96d9d0f8029bfa1374186738ba83
BLAKE2b-256 c659b830fff6170074eea2acd82d9b66e401a98371e05ef918a90dff7f1c8ebf

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49e5bff6eb11ace8c2be11f6a01a68e5c67fd7c7296e8e905ce5d4bf7fa8a236
MD5 8c068f788b6da712075d74c5123d8b78
BLAKE2b-256 c5c8513788105ee4718413e1fd077436c0618f3daba5905886e5f19ff0cfe1c0

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 147402752a70ad55cbb2a0ce5ab5d7e3ffc40d14004638b252f9aa811cc0dd37
MD5 59d0f8d134f3c0dd9655d7b0d57c1796
BLAKE2b-256 ba261696e0ae1d1766c964e9244191a016d05c0745d0ccbef1a9b36f2a6ad6e4

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 536a261a787341641c5fea7d912bf61fe3e60769875ecb3c237df673136ff342
MD5 7e34805c451c0ce472c178e2f951e2cd
BLAKE2b-256 b8f0346b9ba16cdb8f280b924ad68ca4616f111c0281ccd5461510a5b889538c

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 0ce12c33097957b98c6a502b48ba3690d66949071e196f534f02743db5773723
MD5 f37f66fc92b931ae51963e5e03700c44
BLAKE2b-256 32811b01407af65bee5ed4a1f16f52d6ac3d506384c13020dc2de417c28ee92e

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f40e6156048f2a29b2667a37e51546bf1ae29f0ba2c6a70f13799511e87d051
MD5 211389bb8971cf6fb0f97facfa1b030c
BLAKE2b-256 c79fbea513b3be41b34dfc538be4e220be28c49468ce342491bb02ca654a48ba

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08b9bb7bde6ac1abb25eae31288432c6ba689d4495671c8868cbb2c4f373279d
MD5 91c9a96b97ff388885153a219722c8fc
BLAKE2b-256 2eaf91f58e2fea6e5da05bdb14a820f33b0292f1ad6f3122fc49594ce6a15581

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0dccc1e1a1e322f6313022ffbb5eaca6cf692b6dbbcca55b3f8d870ba0ca2b67
MD5 ae635bd4ca7b40297be9d6aee499acbc
BLAKE2b-256 79153b522ff13633f99971214c2160c0f4e0965d2ba5a22803e5b613f12ebb97

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 247745fda3648e1a2232b78b079edf2ec56dabdbeea2346a4d03626442569124
MD5 e1c7350025fcab07b4efcd4c032ad2e3
BLAKE2b-256 2b7ffd9cc7e340f5806beca00f5ed0ae82aaaddd74f8fc948af89eaadb494679

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 6b3503654adf64f18d7a5539ff62fda1ac76aa632e4a442059631600b60d9a0e
MD5 62fd617833e34d608fc25ae193646ce1
BLAKE2b-256 6d4e88d84b190de706208cf7d1b30f2a3fca8bce0e862de2becd59098ff690c4

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c33bbb313d5e9922f7eaeef81b6d7d98e0c52efdc41c4edeb3400e35eb3b896
MD5 cc18a370b8e14ad8df31645bcd3bdb1e
BLAKE2b-256 34f228d866c985adc8bcb16ddb244d7fc61698e3ef724eddf9e99b97628e7e17

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9dc6adb018c6e33aefdfbfae34856782b3c3adf35a7b16ff1233ae11a95a4354
MD5 67899616682f35a97b5f0c46b58a9433
BLAKE2b-256 b93c0bd104a0a01970408fc531538957a82b43b350f36cb2c5519f6693782148

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 891b1c622f3d5c4470ea80818faf4f6b7121aa9fc22b297c97b30a9ef5d92cb6
MD5 dbb922fe551fafd69d26b99cb3775d5d
BLAKE2b-256 4199cbf7576716756ecaef53226924579af3c4c5eacb17533b2cc7cf2d397bba

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 87bb035a4a980e73eef553e71b9559535206ceeb5cee25b88640759353b6cc9d
MD5 9ee1bab442b0522d12f7a6a77ee5dce7
BLAKE2b-256 eb0ec33cfba00a552d967a59545651b8684287877bdf31523c7bc21e428c7d32

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 26df45ab738ee5318c6ebab754730a780c9798283196e9c34f8dd987051cc251
MD5 d9d44fe2f0e6d2b0a43e0d03bb227f21
BLAKE2b-256 bda62957ea03ce16132b783c1e9ae7d224b0b1beada0d5415e0bc9288e724ca9

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2748698efe047149936052fea11038a381e6f98be1262f2a5fd2e7ed03cffbad
MD5 32b48759bcbcdb529fc8d9a5d56a912a
BLAKE2b-256 c0119a12888e95ee8ac8a1595de4a0e193d52c29d33101087974293bcef8deea

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240831-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240831-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7d0281685f5c1d358a8c5f331254b0c6b4b6863089042227852477ff843541fc
MD5 6b7b9daa12c192a872e1bf097c99ab7d
BLAKE2b-256 8022685ad6757923522f0232152bdbe33dfa9f58050ab7d85e3daf3882b4e534

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page