Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.25.0.dev20240928.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.25.0.dev20240928-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240928-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.25.0.dev20240928-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240928-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.25.0.dev20240928-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240928-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.25.0.dev20240928-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240928-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.25.0.dev20240928-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240928-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.25.0.dev20240928-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.25.0.dev20240928-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.25.0.dev20240928.tar.gz.

File metadata

  • Download URL: aim-3.25.0.dev20240928.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.25.0.dev20240928.tar.gz
Algorithm Hash digest
SHA256 425abf2ee2951a6baa47a96188681b0d51a67e333d0f5a96674dc5d79b80358d
MD5 414ce64c2deebc6b59c2db6bd7ffd0dd
BLAKE2b-256 10d75babf512e7d6b6df167db80214c81657fdf1b3cebde8dc46b08d15693baa

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 af147bb2725175d230fc8d886c9b4efad4827bea732b1c5b86eb4a440b8a2e53
MD5 3f9fdd330615c003f89c439858017c03
BLAKE2b-256 1937751a82ecb5552d48b5a9b7907c913caba9fc933e19f9076e3e05b2ca554f

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3567d20b869dcc6536a10fc44566dff3ca9819d43839be79370f0d2312bebe59
MD5 5e30719330238d6dfc8ca45132731936
BLAKE2b-256 ba0d1620f06ce7e1bdb67e7b4e1f07963623a0675e37cc4fb577b5b228a6f2d3

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b16068b8d2952da215b6313c33c813f2257f972494cdd6fd6cc496ce3587d677
MD5 3301e3b6df6b7eac1ae4629be30988db
BLAKE2b-256 178836fa767b432b6d5b4392a94c8da0fc374084b95e57bf175bef59f7b4a252

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 540901b7da1cbf0039fe1286b95902bd7992e964bd033b5faa7908c981124bcf
MD5 c5677a01f34827037896e2c3a4797507
BLAKE2b-256 5ac04404abc8ab7290bd4d9a182de49889cb4578201584eb6d9060fd1c04c314

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 c8e384ac0bc972907bc2a0917755ec9e50ff21f30cfd8d7651621030aae7d2cd
MD5 91715d8da79da94e0a82bf088fe313fa
BLAKE2b-256 064754d2eb5c62627d7947a1e2c9f2a23ce840e08e2bfadd97d700c34812996a

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73c9c30ce2f1d8fba636b7b83e7558b814d5f67a7dafc11474b48471374193c4
MD5 76fd11d2fe8627d202618d9948db7ce0
BLAKE2b-256 7cf4fa23e34e4c6ad842cea8b547708a11b8c542260739bf69168e8cf216cb41

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8773d9dd3723ee5a6fbc059b216442889d0619333d2334e34272961af4cdd117
MD5 9b8f55351c7a7df939edda870b148948
BLAKE2b-256 d016337b7dbced265f0fda3bcfc346cdb6a21648497fc1c8744058db9d414dfa

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a059ca4693971b2ab9f3290c4d0f20e4b7dc412695de2e63484dc73326770e24
MD5 86e8d53e5c9e23df7713a4278ea8ebae
BLAKE2b-256 01cb81b6d298950979bd94915777a9cd3249fc10c7a7e31ee64596322ade8b55

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e7bb63310b72c1826a5042102432810588a2870dd1fabed39bc982dfac4cefda
MD5 a387e03faddf6e2c083a4b4048e7caab
BLAKE2b-256 c31149d8f43f878dd7051a7f8b0df7dd75b8e2942a8baf5aaa4703bab4391a95

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 937b9232540e366dbbc5d905ce976b918257fcb769cf94ab3276dc6f20cacb4b
MD5 5d8ace512e88aa67ba0d281c3277f9df
BLAKE2b-256 21563574db762b66db87888ab37f849c75d54e872a928bc0b3abfbd27c81f8dc

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d17d5d7c53f551aefad801eaa1c9df73dffd8749a3409b57b21cd855c4119898
MD5 de3993970bc94ef90dfd0a0302f080e9
BLAKE2b-256 c245a648fd0bbca2aded60fb1c0d7dba3c85b80cdda88f9ec1310d2ec8317a54

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 840e49daebb616222310e9de5ca4d045dbf8521e511a28ad69561c499b26e4ca
MD5 5fcbaf9413b1f14b58999594f54f4472
BLAKE2b-256 fb5bb34000a1e3b67e6f8ac89ba55a51c48f6e442dfc64e600ebe34497af6b3c

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b63675db986da9038bedc7246d33497a10150fb904f0c7c333a2f72892cfcd2f
MD5 904346da87d898699065761ce9268bf0
BLAKE2b-256 84b2002f453e62c232e8d7a38f91c01ca5ad7c99c45c77ba93112db6638d142f

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6fcb742268b5330cc96f968ec66b9953c3bc330778f2efd1400708ad5b4ecc85
MD5 872a26ec056831a29a20efa31db8d8e4
BLAKE2b-256 ccef0f40fa284a2b94512b8bf5b7e021f7f6fe6b2e02643107cd8046c2a8b2dc

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 b0b258caa833f26410052b4da5c906c872d9503b4780f47dab871f19eb5ee8af
MD5 285bee892ebe214e404fdb49b2615159
BLAKE2b-256 39cc0c002cbff27bb64c76d12b2d035ddb35fede891ef5b5f7915b2ecdf6a089

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb4e1770690dbeebc499aea6576a42a1b0c7081ef81460efd99f4356c60ac1e8
MD5 4ccd098f3dd8359a77ad68cc0bd74e50
BLAKE2b-256 6b8caa1d5217894049bf0d8132216f144ff164a560fa3ec2e99273698da34064

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf1cf77b0102e892d8f83e4409f06189e7f1facff7a4256a4ac1713bea75eade
MD5 7bc8ef888d8842149ce4251441b53e68
BLAKE2b-256 685be619b4db5976fd6c091c485156f3512e931118e2a641b8aab293a703d3af

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 91f71081b8f1d70cb20c219d8ce4f26f2b3f790eb8e7615e21d40ba04c4ccde3
MD5 e92d9f02341663eb8a41920bb399b081
BLAKE2b-256 0e6a999f11fe2833d3b00f5b67fb2ed9992cfd966cda4a4ba7f34df7500e0adc

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 743713a6b19a3e0ca14ea51e7dc944b9556771e70830fda45de35315058ce467
MD5 fd75c151c5e80c974690105ba19e572a
BLAKE2b-256 d6f15fcb977687cd8338704aef7e769a66d06b569f90e168eeaedb77684a27c5

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 f9723c0b02325ffa8772ed3da2f63bf722bdf1fed66bd62572b342cc4ff863a9
MD5 dc3c542aaa2bbd91a31c71022c2ac8f3
BLAKE2b-256 87bc1444669a172e5a82b5cafdaa6c69a66b80e010190166bf6f6c8ac874a3b4

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5216b953e68c94351e56daa560c4367686e0a7b1d76ce35f0e25362d4409fb69
MD5 32f7bacf1c63c6a97b4f35b4d57f2263
BLAKE2b-256 4f4101111d8c651a13f93cfed8916040f94a902ea3ada67612483429d64e72b1

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0394eb6186e8940069cd4f66b78c2e7f535936c9825cb5bcc98787098dcd9768
MD5 54fb1d828734163e3377e6d42ea19500
BLAKE2b-256 b6981da6bcbc989c74233ca5f0594814f791e344fe562fdef26f55e3c9105a80

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 73211fd59af3d87c51ec940976a43a645517f30325b5283b3a6c8e169f819209
MD5 1c722bd510f5f649f83b62fc01a4efb8
BLAKE2b-256 dcc70edeef65406c067e6ba9aa55030de967aae694428193bd822de5467582d2

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 954137adc62cc14f83a1aa66a8725d22b2a13e3ee2430b2d1c2f72b28ea5d8e3
MD5 4ca09c163d960f6c3f82f2d30c4ceca0
BLAKE2b-256 ac8d80830fd6d71f1e4751210fb94057493d8133dd1ec318c440cd4fdcedf3d6

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 673cfe76c26139b7deb75fbf5f046d1babea6b2d019e53051a35bc7d38224ac8
MD5 028cc1fa859e23f543be820960261c56
BLAKE2b-256 8f8fbc525c511ff426873ea067620327595d4d5a382877d13234770a62f69d76

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b9f5a9f9a86be592b39339be1c492fa4cbc90bcfd185dc4294f50797b1e55f1
MD5 9534e1e19fa3cf103e15c5b69c90f7e7
BLAKE2b-256 5fd6df54026c8895f89c1a9de2fe0f4b255c4accb8e11466360d2626b16a4a3e

See more details on using hashes here.

File details

Details for the file aim-3.25.0.dev20240928-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.25.0.dev20240928-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a249929e5be5584ff0c71778e9e267ef7d98274ab95eb961c97e61119526bcc8
MD5 323456e85b5890fa079ddd952a97df14
BLAKE2b-256 2e6d00f70234fda012880f73108d24ea7ff28a3e79e314242f5412503ff61e2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page