Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.26.0.dev20241003.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.26.0.dev20241003-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241003-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.26.0.dev20241003-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241003-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.26.0.dev20241003-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241003-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.26.0.dev20241003-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241003-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241003-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.26.0.dev20241003-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241003-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.26.0.dev20241003.tar.gz.

File metadata

  • Download URL: aim-3.26.0.dev20241003.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.26.0.dev20241003.tar.gz
Algorithm Hash digest
SHA256 04e6d3553f114f3be6debeb83e0b1a5484d24ebd4cfbcc539bc1b1ffdc3500a5
MD5 616b94e2bd2a6bfaf7b86b177e76e0bd
BLAKE2b-256 86ae9190225ca4e4c3070f241fc780002007e10c686806a20113c9fc9d5ba950

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7c982e4a52bcdda25b4730d8d38815e8c3afd7b386190f35ae49bc8d9ae1847c
MD5 33131c4eda2a025e067e3724be758dc4
BLAKE2b-256 3b52e49d5b2d380ac5ced65a7f016deeddeb1718537b42b7abce3fb550f7cb3f

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09f648f09b1b3997712bd60ac7604fff6dd2ed05bf992e860a646d078bee1518
MD5 937bf42f0fed38f67d0869db6dd4aa30
BLAKE2b-256 e359a10aaea3b2a00c7fd83820d11ace8406e7d45f7bacce65bf01a0aa793fb7

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 577119041588e530935ab14916990d25ed34cccbe63a4ba37795346c9fa38454
MD5 0e30540bb6c3f965427ec9539fcbc1ba
BLAKE2b-256 a18513423d2fb2ea718a0e6d7c39563129cf4d15fc06c26317b25e63402095bf

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4ce0b774d32e150d3e55fb8930e7f9d6539f283443eac6bd1c15320c9ae9c3db
MD5 342d779d31fde97302af3d169071d67f
BLAKE2b-256 ba72247c449e30964e918edf0d2cb1d4d4030a00af0d53ee63150d7c2b469ed4

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 45d289199960e4276e7d8569a40d689938acd1e87548871d9d44f1fb184eab52
MD5 37b773670f778ee0703303eb31e1e888
BLAKE2b-256 5b4c6c532c8cd1ef0110188d07805d0c20af78b37b58c3eec7d1da8c6a106b57

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 855d49b206f57a0e01369e8b32f5cb920ae9fb1424c4a42f8e9714fb4c2d47b6
MD5 4043c108bf15aa94ae5d8168561232fe
BLAKE2b-256 6dd0726599218ee331439ccf22d7b05a33115792dfaa878c1eb472f448951b0f

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36b971dade511f22c8d9098f1ef77526cb20c6f409938125a349150be980c58f
MD5 ddb198c38bdf07cc224ca76320b2608b
BLAKE2b-256 591955c0fae61612aa21e8b5397fe27442a5d4d33e76f66228b87ab6058044bc

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a024b9e8148e25ed5a671959c5f762cb0fdb2ce12c1c6802d5f5fe7f8cf37591
MD5 6ef3cea48bdfe9fdd1a6395ee47493f3
BLAKE2b-256 03c8b07e265a16b61aee7600ec2f7e41e8593124dbbfdf9f7544bb69c6ec389f

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4d4e40b59257d8f7273a26794df30a93039d58ceda07a834508e345bb05bdd0a
MD5 15c0505924c0670e31e5681364ba7ef7
BLAKE2b-256 73458ce74a9c9cd95958ca669db5c386042bf11249748daf1893cb87a10a2c9d

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 666d67eb5b33df21870d5bb9d2c9da1a146129aa8bd458ee08bb05c6776a562b
MD5 f3181d259f409513eebcedab408ec28f
BLAKE2b-256 15d8a5fbf07a5b7ba30ca4a8a7f6c3f959769ddfb039674f0c3d51f3747c0d5d

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f41f3f6b41fc79dff5f902cd86ad2efcf5ed5dc01958a8630e1d328d8a0b756
MD5 ab28e9e22dd1c235eeab6f2a26c15d57
BLAKE2b-256 fdf0deee1c6d88e76f6399fe869fd7e9710bf6b594a44f954df7dcb77bd50b42

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2969ed50b52121aec3502f53e4a92b207181a607f5b9c1c103d4a9ad26306ffa
MD5 e3131eb5b506df46d606a2ed13a1608f
BLAKE2b-256 10b6146ff2cc1e36f49cd00b680728ff520877423036f85f9b2f831c485f4d37

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3c5c94f03fae2625898f589f5b167e097823a652332720e660880d119f9b05ad
MD5 9fd08c4b7240d98ebbcd1301cb6801a1
BLAKE2b-256 c078aa820acb9ea714fb3a54fc7366bf6d195755f5856806cbacd3abc0cee26e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0e4a566e4fceca5196d4e90fcca7616a21cef18481417df2d4c439b52b2d5def
MD5 bdeabcf310dc642153f5a73e05c08e22
BLAKE2b-256 f076452408aa8408fa186701b4f97bf575f8e00dac835ef24ead8d9b59f8d639

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 fca3f9d96889a3d2c85545cdf039da5811b6e256f46132d25c306f7100d7b2f5
MD5 cbd9658ab6ed29acc59c356ff17df6f7
BLAKE2b-256 d702ced3845bc34f0e907eba6aea75f0a11102743e3bc9209b4cfeecb41f2dcb

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85e0d7bbf9f825c6076b158439c0ee86fb9335b05a3226a504b216837d49c183
MD5 877aed4cf9dc338e9655fbed0c3e713b
BLAKE2b-256 b1958f67d84570f097cdfa4f7843b8337cd8e30216135cab457c46a0c49d54db

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d50364bf0773635c20c2a307b3a6a415b3c44b5f2848731a0733b9651ba8dfb
MD5 c36720448a07494d3c0d4d20733e81bd
BLAKE2b-256 4bb8629b5e22ca327dc5c4f47c070ce02d9bf3ba57c2901771e8bd6b3bce70b1

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 392faf09e40e13b7bca0339a07aa74b917da53e736fb3c9057671e9e5ed81ab7
MD5 1fc1c65b8283c8e4b46384293ec51b66
BLAKE2b-256 5b300acefa6401e7820c55bccf38d1a009e73381763efda76a69971071a78b81

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 3d486e5c99c02b7638e24d33caca537103d197d485b0ad218cd009b1f2ab56e2
MD5 96d87c6b0574974e8c068ff2759e628c
BLAKE2b-256 1c4915e771465a5cab7c2fed31ab8d32c94380706ddeab892608abbb1e332b09

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 010623743dd27dc56e76b581c2ea79f1f749f63d9a4e20ff2efa57521dcc917f
MD5 e2aabc44690c92f82fbd6474f86fb4b9
BLAKE2b-256 3035b8e70dada53c8eba97b431370b837c732ea7eea41a41f9dd5e2f72334a41

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c2bb380e05b33d52ee7ab88d69053bada8a2545ec54d288d1ebd4c8f4da0025e
MD5 7a75bf83994868b2e635352e7d1fa10c
BLAKE2b-256 a056075bd7bde1b3157777bbc53182ecc5ca5002cf3c882eb9433c9bb84f28d3

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5bb5b84f5be3ccc115449127adef3f1754bcfb60f1ef7c911ba25e18400b2f1e
MD5 1bbcfc89d1c14d71ee8e7ae40c238e99
BLAKE2b-256 adc04cd90e15ededb19246f7257abfd5068222e93d94c7956522d3fa7fcd8cc3

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fc7f4ebb3097d17517a9e24da21775a246d6202a1a436f0b7f9b3add6cb8be91
MD5 f0d2308feff103243bf26945b8d87dd4
BLAKE2b-256 69872e059a6de0519ccd44683b57b1fd86bd2b5f819f8b041c3133d61422182d

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 fc4e4e3b27230c93099855b2634cc3a384a9d6e20edd5c19acedaac6b1850828
MD5 05262c00ebcf9b5fb724dc4497281fef
BLAKE2b-256 ec10243fcd306b3baff0b90725262494fc12b3f679fc72c29d7057e8fadf8226

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c47814a7abf42d0a0ebe96ac6b075e68103ac5402c716879cc26f2e8be4a6953
MD5 35787e1d5f38712911bbc0e29879e0da
BLAKE2b-256 0cbd1f51913944f841b782ae1a577c6248ba1242c09723af0d33debaeb95020c

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241003-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241003-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9b369b9686538b5c88e967376f34c20dc95ad186d982b87af1a8123db6a3eedc
MD5 561178ef1a7d02cea62f58d15aa6dde6
BLAKE2b-256 417cc8f6b561fa320ef63ad41b5a47cc4d2044cd5784a51261e9ff0c79f8b64a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page