Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.26.0.dev20241005.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.26.0.dev20241005-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241005-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.26.0.dev20241005-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241005-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.26.0.dev20241005-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241005-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.26.0.dev20241005-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241005-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.26.0.dev20241005-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241005-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.26.0.dev20241005-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241005-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.26.0.dev20241005.tar.gz.

File metadata

  • Download URL: aim-3.26.0.dev20241005.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.26.0.dev20241005.tar.gz
Algorithm Hash digest
SHA256 bc9c6d15ee43f3949ceb6eb202edeb0a17c4654ebd20b8bb72bfda7967f862d2
MD5 5d1a164de6e0add735071f820f35b48f
BLAKE2b-256 e7ffde240255dc12fe15d6b5ff91509dd024053fec9639e6ec411f0488fb0c96

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6ba89b0dd600e110a1bfd47557f5b112817f257a3aa8276f498a958b37721985
MD5 d5aeb99d8b59226d85768c505b8aee12
BLAKE2b-256 8f37505f63fdd3c85950d47083e3ded643d629572456bad366d6340f0db56d14

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b02ac6565741be2330ef06d4af9c1ee1c1887bb5e0bb481e3f512c643433dbc3
MD5 10535081de0257cf3a486639829e418c
BLAKE2b-256 7fab6f9de509ce1114e8ddb384fb5a8a6c3e5145744eb9855fddab8e36679463

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e5ad8d07dfcb94ecb7d9c6495257381bbc9f73e15bddd04f75b5d81296a409fe
MD5 25a839bca526b7d96355a293de8397e6
BLAKE2b-256 b35850b53c8f6ea6a7481e2c3d42aa838f7302cceebfdfa54747519166c93fb5

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 795789bfb6aa2a8e911423b48fe5173df0f813e2b44df56dd75562751c9ce677
MD5 601778df47952d02409aa695833e0a9e
BLAKE2b-256 9b1134401a8deb9c9b1d593b3ad68259aa0e6333263a926d2fb10c342bc11e44

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 3349a5b2d07c33d5faccc2ed73c82d224f769b251593024c33d3e64925aa7a8f
MD5 2d03c039d8eef11d12e74fcf73de79de
BLAKE2b-256 29666a28d0d2bb5e130b5b0553d7fda2a90e009970c15aca0c2668e61af6ad8b

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e3f895aa0e90df6bf8e5c22c5a88e1d959e81802897adeba4f9b6a06a6e46df0
MD5 e7e0ef67b73fcd1f72f223614d1890ab
BLAKE2b-256 0ac8030cef6d0314f578580c4cf9ddcec2b5ae57b4355384f0c67f8a7772c4de

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 190593d5438954139289d323dec3cdeaecd18e5d926bbf5e2eb5c7fe384d9b1e
MD5 32524fb76f57b4e5761e1b7e2e0e9db6
BLAKE2b-256 f371851e744c1bb9d922730e5b2e1ec2e26a31a7f9b6a085f9652f040db7902f

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ad07c611eb6c3d1b91a2582040f873e7b37181d9804d28919adf56a66c618653
MD5 3b558dbd90e14d5474dfc67435ea9810
BLAKE2b-256 d243fd006d9408ce91ffd93b6fddf688b4adc05b3b9a6543e2f43e0486fe2edf

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c336866b4d2d299a15b229fade2abfc2a04b221e780dc03be621d471c554b501
MD5 64be18e9213247778336359103aa1bee
BLAKE2b-256 28e11cb57c229fc945534f2c1a191ab8cbb473b7eedd2dace3e74fe3878d4017

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 383da060bf2355c2ea2d73e2cbdb6ccc105746940045f525db7feedba093c5ea
MD5 ce76889834af333ccb885bf3af137d83
BLAKE2b-256 8aed4a24a6952d47dcf4ec991287e634eded62df791c77765db4ac10d3dc041a

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8bb7533241accd9e5900a7b71a3da3512ffa1e0bd78a03ac6ac1e6c9efae3c18
MD5 ab7bd91c6035bc8ad24057a7ede726e0
BLAKE2b-256 d012b964ac74a051b65a588d580437a310addbe6243a9d1f174cae4c5dba2064

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e09a60e09d5d1942ac5c4e77a3b86bee73de2e12dd334a934ef8149a261c7e6
MD5 225f4858ba567b7f19c04618163a1373
BLAKE2b-256 557630204c81c04ad303b9cbdfda244d42ea335edd004dcc6ad8630071a76b78

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 871c81f494986abb10fec813cb602bf51c827a91697ac9c5a28a15cddfb938af
MD5 b2d7b73756adc431101f38c1590d464d
BLAKE2b-256 6eece3567e5e7514e54837a84e709c98a70b485feb61cb466d937c91f550a3ce

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 975d6150abf88783a83e5c771fda0df93e9b59edac14a6f26ace340adf126aef
MD5 a8cda86d61a04cea8ad3b9db67cae96b
BLAKE2b-256 40762b0ef5038743e88817fe5893ff34b6c6ba38a8ea5b01d25dabe8a6aaba73

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 7b71e8d392730acdd54d29c7a5e44fd7ddc6a1757d91e55964d6afc4bdb87bf1
MD5 9933883afd922f55008b7cb98ba266f6
BLAKE2b-256 953ce564df852a4c16d1cf870f1a37d170ca542962f726ceea81d93bb231e6ef

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5df8ffb1332f17e45bcff9ec022e8891502b6bbb7cb4b27f4089f6bd903d0f3a
MD5 cc73562266fec9a2c6ed5c7d7a4233d9
BLAKE2b-256 c92fcb44c73d4a7bac6b4784dfbdda6ae92113b89f34f8188ec833125d26ee7e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d8e319335354f384b8c1ce4bd0b2878108d362d66ecb08e356d9a77cb3ccfcd
MD5 d34b691bd02f28708a4a0eb379ceacc6
BLAKE2b-256 fb7450b1ebedc4954f40bbd37b8bc652fc88068ab5c6abfa6e242bad14b229c0

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 653862b92ffd842b8326af833a1c91fe499576eb1caf29fa2c111e390ece5545
MD5 f4df55c5f6b67db044e08dfca2eb7284
BLAKE2b-256 7020dddd985d20b0929723663378e7602e940c99e5b9258c4f6263dcc1f00b44

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ec3963dff292280913ae3724c477b24d9c20f06dc07ad831fd17ad711274e9ff
MD5 e35a0c95071435f9940a07b12b4dc8a0
BLAKE2b-256 6970938afcffb92dd784e5ddd9ede7479c86fd012413bcfec6d4264e9a97e2f4

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 8341f92163088278ad12454776dafc584040301078f8319412d4072c1a8a5bfb
MD5 74dfb7b6bd4830d19d2817e9c92dd480
BLAKE2b-256 cd42baf302d3e08ed687f6c87c2ed6608e7aeef6f09c4c39e709f8fc3d816db6

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc7e12238fc7c69c335c97363431066e31eceee15a0f26f78842ff6fe3e9a6bf
MD5 a1f8f2a25cd40ad5e0ad5dc31d1c56a9
BLAKE2b-256 8276192677082e9f12969269f9a3e338573300c1ff1567586629fabc2aa5728e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef684b16a0712159d34e58b3e9534bfdcb9144bb0f8c667141030e8f168d0103
MD5 b2a835ca4751bfcb9dafb1b3a4a1db6f
BLAKE2b-256 1cd4bb31a6ea99f41b96a29fbb091a2c164949d2bf4d590fba30be721c72cb09

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5709c0cbbc815c5b40ca713cae2c58d40f2f37c6077fb647b478b3372b2a7a28
MD5 768a72d2eb33cb047514889020fa9ba9
BLAKE2b-256 ee7dadfd12f09aa5f9fd80ad122e4f0198708c2a9651cf36f626f7b0cbb5b221

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 90efd6d11210f3fbe10b9beb4921c1db3ce335e570f2e2bae0afa21b1bfe6a11
MD5 bcac0447c351f4c4da72e87966db5598
BLAKE2b-256 e4732f7f8767766a9ea0f6a6c6962e2447ae02fb0f80270a30518206cab60898

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 5fd81dc63d4644ac80c8e55f20208b25aa2144dff0802bd81d1e2b10d6a2c238
MD5 8ccd1d4479a5d5ca9d3653f3260b8e5e
BLAKE2b-256 f3535be4f67ab075ffada7cc463e20b768debf493457fba17d4f10607e9d9474

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3634f1e22183a9e6427f000ca8057da07c1ca4dc48088f6428914c6d86622230
MD5 cc9b236ee98a0c0642b0067761ebeff7
BLAKE2b-256 39e983366c4cbf85907c1c3ae5b2d56b101924bafd0e9224214b1d61af6a34b0

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241005-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241005-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8e3b57de5dace40e899ebb0f56be0ff1cd394cb76e8f86838aa8f8dc23618dc8
MD5 955e1bd13e7a624d2d7df3977dcc6b3a
BLAKE2b-256 0be1d7dce184182e210d4ae5ca3daf04129fb9a265e26cd4d7f8ec683f2e7240

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page