Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.26.0.dev20241006.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.26.0.dev20241006-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241006-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.26.0.dev20241006-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241006-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.26.0.dev20241006-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241006-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.26.0.dev20241006-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241006-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.26.0.dev20241006-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241006-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.26.0.dev20241006-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241006-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.26.0.dev20241006.tar.gz.

File metadata

  • Download URL: aim-3.26.0.dev20241006.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.26.0.dev20241006.tar.gz
Algorithm Hash digest
SHA256 a7452f3b6121aa695acb2f24a4052b1657f6b6d665349f0add3741b3f85c0911
MD5 8111a14eeb965704417d827949699289
BLAKE2b-256 e5f4054f436e3b0d6cd62dacfb58173c2e17f8471b2d34f0d5664be1b0ebefa2

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a9d7161ff96b9eb43f3d53f4a875ce70873f6eee7b3e2e18d8cfacef2d302a23
MD5 c7baa5ecb0104479a2e6928da5fb29b2
BLAKE2b-256 c96ecfa5045ef169287b5cd7296ee43dca90507d1bc2a901003c123b66ff2d95

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23a01fdf345ad917f1e25f30466ac0cbf220c85e6c2c5c9ab4fe6f518df55647
MD5 4e86f031b6c8b212d60a13f8fbd45f7f
BLAKE2b-256 09fe20e22f74519a1b733a7078269dc41f4b2e7e00742b7411f28ee833438ede

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bb5498786fd54dadb84ecb01faad2754f1085b466a7843a27c877eeda7ca6726
MD5 92c054c607d7d2bd2a0ceb64eb95ed7f
BLAKE2b-256 102d2255c78c7fdb55c99cf7ec6b242388c91406135b26716959c193ce1f7749

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ff875a8f2c386644c8796d4d94a749b49722b088092d31c867c396e6e6fc5c92
MD5 f92639aa89720717df8bf561c6105c27
BLAKE2b-256 816ded8471fcaf55de27cd859c2625a44340130137b351c4ef426cf94391b164

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 f417a71902fa3fa628d20972073f6ca5e8671e26853b66c5901c7d4a0609d052
MD5 c4de0c679227d2b34f482bdd2aab1c79
BLAKE2b-256 ed10e641d6edfd93f230a567328bf45895be0b65263dc342a9e8327a50073e93

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79268c3ae48a592d1a6eb3ca1c105927b532c372a61e7d6d92244e0e274e85cf
MD5 8717355368d6e049b1d038e5f936d3b1
BLAKE2b-256 86d90629571ea6d63fba6806a5479a14b2477851bce306b230a90e17cb220d27

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e82b726f0b4442662c3b45adacd66310501ab60e1311001672779fd102289c73
MD5 f21e3608d54c1305f9e267418d738e54
BLAKE2b-256 f1ee85b25fc5bee4cd9d180356a8f790506bdb6e9e45443109e24fa0f41dc2a2

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b3a2b1cd76a507cce5846099ea120b76d5a6285533fb15a67c346ee247456d4b
MD5 ce31cfbe7e8c8534e02d3eb735a5fc8a
BLAKE2b-256 f6b54397dd677a13d5c329a7cb34ac8fecd5aa1f2c43e01f2918416ebd1cda63

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4aba9c73a655bfd6a81637fa95824b8b7c15fd2c1ca224ccf06d7c5e144deba7
MD5 3ba458349d0efbafc88ba1fe9d58d360
BLAKE2b-256 e904d00d53dcaf4c81b8b1e7942f86b5101d7f732b1b6d3ff499f5d361531524

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 56d83a746d81187aa242ab18e58d7bf14cacca3086250cd2f27f508ba0030894
MD5 26762ab06e44411c49c5af81927d1b77
BLAKE2b-256 f4879f47a95d1aa74838d78d0b0d8f2ee99b99084a33231ec189ba9223ebffea

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8dd754319cc75ec454227aca9511c89d1062c74777379713a83a50c8571017c
MD5 e12383785ae3e3b619221af281596404
BLAKE2b-256 a49594dba8301827714084be08a24451cfebcea41f51af428f930a4bf6976750

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c9bbbfe51318ea94d86931262eeffeab3691410c63c68bf6c514f269af27305
MD5 5ec9f73298fd503df2c54b4c14f2dd7a
BLAKE2b-256 4be81b86418afb22e0298f90f94c1307c27dd56b7ad10c991a357042d893a56d

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d024a7f7f45c0e41ef11474835f9449983f52979f3bcaae76d5363190c5f927c
MD5 65cc2d250c92d55997524d9b9f5fe3af
BLAKE2b-256 3d8cfb50dac0bc9516bc89363ddbccf58b639685c1e94bea66dc3575002e458a

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a4bc98f33e0568784a7dfa3e69637fbd9eb80ce2fa6c4f66cdadda73aa57f151
MD5 708f7deaec6738b792c12abff68d8a64
BLAKE2b-256 fab3f3e8f0e5db16f016ed07b69431df55c0d46da95a28a8aff0930f6da4f768

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 ae8cfc59e005676e5f2ccd54a764893081d283f963ea2cd19a3b21b18b066e4a
MD5 e503db2bb3db82929249a282dad9d1d5
BLAKE2b-256 e04d8fbcf72487aa170dfac839915c2eab4542b006b46bd1633b8ae4467dff39

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23ec1644ae0ad9d29ab00ea33c439c09c66433f8d9cc162d0c4b1ef037fcfea0
MD5 34f432ac74cb02c226cc3080aece1f6c
BLAKE2b-256 f07fed82442ba3ce18e08d9c96eae048b7c13424b5cd45f41e44f8c43c9a00c6

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5343a2985b269543453f112a0d3d91d46eb23e20fa634064960a57fe861cf30c
MD5 62c6462fd107dc1c2feb0443a637af8f
BLAKE2b-256 e09067a1720b36140e475df604d20ec459178b341ec828e0791b4ea9d014f7fc

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5ccd101e27a32c39e6b35642208326d57a6f2886f868d7ca31c8f8138aa954fe
MD5 043a09614281960872218f8b8b09a72a
BLAKE2b-256 b4c74029d599f92d7bb9899d011904a28a0011b403260b688c77b2d450b36a3c

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 35fa506aff6fa4278c053087de0e086289e8e6842b5d1ef41b56b5864294d2ad
MD5 ae80f429d8aa18f368bcc9812fcad10a
BLAKE2b-256 f15e113e1c0ab6b0f263fe3f1ee7083df301d30fb4171ca62af8b877d1cfa5ef

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 cc6e4a581267b6b63cff5d56ac3431c73df423375d33909cbd2d43fedb473ab9
MD5 b190693171e8af52c9272b9d279c7a5c
BLAKE2b-256 27208891bef679eaf2bed16e314ffb919be2b0b8f32935cbd746ee5d89ebd85e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 326b0fa8831c5d1681f1c0680ac6353b274ffa762f6719399fb0ec4e0080616c
MD5 b0ac9a98614c2bfc07c19241aae4abe4
BLAKE2b-256 99f4f422505ee6cac9518311cd7af190384af907ebc0b95fc72bcb2cb6232105

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c98c1826c072f70ab7ea966c0bfed4576272e775a64a54c50233dcc2983577e5
MD5 2f81b6892f2047139ed6ae25f6b0401f
BLAKE2b-256 4699b673dadcb7fe69f1f9e1b0ab7afdd1bb2f663bbf5e3679d8d26ca5b1fa34

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e4c3e27a257d717bf0685e0146d13fd1732e2a8d49f43d471c3e1cf7a07920bd
MD5 b0083ad37a1a358938071025ffc4330d
BLAKE2b-256 aa2d8d82e3745e8acf0a2ab943a2523fb1ceac4484d96f75b528e6f4ed9694e8

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7903ffdf3b3d5f62f6a5e14e251e58619d51b109a36e4684af021c27a6661211
MD5 d42919524a120233896666b3f50bfda5
BLAKE2b-256 a9e7c1e3fdd9a5742f1be9b6e068506dfdfad78e579704bac5ece5011e526cac

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 fed8a4d0ffa73bb3a796cf0ea986a62e89821230f17ed7c5d3ee1e34250d879a
MD5 73e0ad82da8ac89fdfa510058a1b3f89
BLAKE2b-256 01850d401a0bc52d1461735f09bcd109f69291f67185ea14f096425dcaf084df

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf7b8a0f69c148a41479f1568422ea6df05b5d81b3f2ba42b9064bff56e68b7d
MD5 79adc7fb02cebb00effba0eb7e64ca79
BLAKE2b-256 261b525bf2db7283d1142ec837bc9649ab69d582823bbbb940864b880a2c0e65

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241006-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241006-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6ab40b0e9339c38767b5087658cee224ef2768720541b27f9db44a1db573514f
MD5 d27d72c119e1f118ede194a946984a9b
BLAKE2b-256 abf1afcea511547d0fe74e6d657b671c53e1c1798fc8673d3cf1232775dd5d48

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page