Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.26.0.dev20241010.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.26.0.dev20241010-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241010-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.26.0.dev20241010-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241010-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.26.0.dev20241010-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241010-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.26.0.dev20241010-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241010-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.26.0.dev20241010-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241010-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.26.0.dev20241010-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241010-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.26.0.dev20241010.tar.gz.

File metadata

  • Download URL: aim-3.26.0.dev20241010.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.26.0.dev20241010.tar.gz
Algorithm Hash digest
SHA256 7eed2aa96ba8c4e7c00d5cb6ea8d197a0b38e90d0b25249e6ef4138f3da57963
MD5 14218c6c0c59d06eb98ce03b4d1f958d
BLAKE2b-256 2e474a00885007846aa6c621b8eba354295cba75ab381bc4d6b11bf8648b9cf7

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 971fa09c130d846741eaed11639a787d2a9a352a16277bc1ac9c60e55c6b5f29
MD5 b89baa5c1e6025a64bd95679c73e7f93
BLAKE2b-256 735dc5c8759f9bb03f56f9ca05c08ec72ea724faee3ef96451091bc8c977a78a

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6f796d23fbdc588c07a02df7069c640d65d31627f475e30211fb2e5ba802ed4
MD5 f04da8289d153594614b6199e5beff32
BLAKE2b-256 0d5e09a145cda5a638a78d0d89c4a28786a3ce979c5d7e218b3e900d741336f6

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 255a53a079ad2f774268dfd468086b86adfe894afb48b63fa8579067858ff793
MD5 17452072c56d26d38fa4dc3cfe65e68d
BLAKE2b-256 d2c426a8b5c05e15be3eb0b6d58d0f12bc2d04a6a0ae8e8e646d52b362aa64b4

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4030cf230720856234749952222c865afe098097e9788a314c3dbca050750c23
MD5 479a5e18c61c4c36a95afa29c88c50bd
BLAKE2b-256 c25de644d18ef4e9992569b02c352afe166ad4f2632a918e817ec7d167c15eb1

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 c5a9f56d49e3b7d2f37e83e41566ab47663d411a0ebd7b20896cbdb831dcf79a
MD5 c3a1558c2e58e01494b348f47b0e2710
BLAKE2b-256 cb28439d55c099bbd33fe176c2a9bc6761ac33c783c3684d8766547c9604ae8e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32ad5ecc4615eb7aa67cedd26843ca5ee64384277592b7c9c7505a45812a12b8
MD5 339d2b322b5136915b1b165990900d31
BLAKE2b-256 e26907a3b4786dd2b91d2965bd425c08e2790bd6bffd971fbf6fff6844a6e8c1

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a15cf994200030a21052698a322107ecfafdfb09beb0f18119214537166ca111
MD5 0769515a80a908dd1027cd4580b30507
BLAKE2b-256 61a02a5b3d15a5340c4a10f94fd3d7cd2a4d7a9d7ca72622a08ffe15e259f4ff

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 89ef0f0277c5385af35288f71077081fe7faf722baa6e94d0730726de570dfeb
MD5 7fce4ac831b2cdbaa6be2dc9c2326120
BLAKE2b-256 8772e584b515869a0375252655ab492b5faed3d613945e75a8de790aac723954

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b234e4ff0b6e390f51309a1ade8257c1ea9707709c6417a1dee1c2b605bb2b49
MD5 370614cb5cf29b594adfb893c8b6be7a
BLAKE2b-256 6cb312ae4046f4a5201fcbab6660fbe71a666e43dcdd58b9727f9ec6ed6c9d2d

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 cebaa39e28ce393c28f5efc5ef488f0375ca75aa0f9473f6476b43d8b7ca2741
MD5 ef8d5bc4e996e411d9a72719b39ff8bc
BLAKE2b-256 f33484862283bc8f061e32c2a10f5fea45b2bbc03f45cc5b2d6c6ced18d563d4

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9693319c67d18e072ce91695d4345aa3873256d44dd002c3cda6fa606fc2757
MD5 6e0512ea528cb9ad191acd25a862487d
BLAKE2b-256 78a207a5c52ee26d27d5f2069cf5f3b36ddcba3e97dcfd6dfa0a8a2935a42b0e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a98d8d234452a887c51466025b6d51eb1684355552f2a38e597708e2e7eba166
MD5 983329f1f3840d783f8acf4c761e3124
BLAKE2b-256 a01a48216a367ddc762b854a4d199bf32a109db2c7ede216a083e14ac48b18e8

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d0ab52c56f71e3ae0fcaf2eddf5510bf3d6f4b3b6dec885ea087ee39498bbb35
MD5 bec07f32bdaffc3b1887493e392fb99d
BLAKE2b-256 f23225bd55809b9c8729aa42973ed44693ced46db3abeaa02e40d3a81e7b75c4

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bce0ed5bcffeeb910ae2217b5a2d30789a0ee4aadc5d9f08006664669b6df0f7
MD5 1150741c464f15c77b3fbed47dda039c
BLAKE2b-256 47d39c184b2c8746909cc536fc587a155e4cc916fc5ccb94d2a81874dcc0378c

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 554bd44592d869ef72a175fcfa5583aaf311132aaa2760a2964e5de1264f018c
MD5 754d0690bb5c45beef6af8fa3712c639
BLAKE2b-256 f6c3864477099b6917bf438c1da9a8f5dcd8788b9d09d9e66e358f854518ddb3

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5430dc0a6270f1c917cb045322b81cd426028bb59d7d3fee341ded597b6d93b1
MD5 a2f247f3c38ab15aa8fb7cb366f8cf9f
BLAKE2b-256 f4570523924f04c5c410d618e3b3930709983e15558796845ac907bad9848fee

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a1461a77a56503ab229280bcde7bac44df66b7a03a481644bd1e7cb816ab42f
MD5 cdc94427038dfa911c0e8d9ba9be5b8d
BLAKE2b-256 85f5674d8a51255c67776b5f6b1a33d321d807e4a70e26d35f0fa9d63341af60

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d49b2274001b79d8fdf31ff38577b5714a930e10c655915169ce068118460848
MD5 0cd36671e7ad9a6550b394957c29774b
BLAKE2b-256 9c3296e60a42121c19e3cab6c63b70ad144823c6a7280ae3f8464172d869fac7

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 96722690c43426545c6592e03be6fb54c9804d4ef58bb68835ec5fcf12126e99
MD5 abd071b98a93c5a239f4928d13d8336c
BLAKE2b-256 662f459ca58320bf6dfcd5db104f69ef7f86f14a1c3f79b2eec79456ffa4d3b9

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 ba4b6a551fab174eaa80ecc945a176dc3b3b0815db8570b0ff1fd84d61c5331e
MD5 6efb2df8bf648e39ecae00e8eab58f93
BLAKE2b-256 e2e245c59b42d96ddbce19e4c222c5598ef349822a8a9f9ad24684cbd3507cc6

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe943ccf6fbfae94111ddc715b279ba772d190f459e5993e9eae048eb0ec93db
MD5 b8632d6ca72ce52b8f88812235d940ce
BLAKE2b-256 df6a527bb349bcb6ce004dbaaf09a17347e4692f841319e6cfd03c265ac5ae71

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29bd3c52ae99495789191007c6d0b109133ade9da31a0cae038fee93f719fa4d
MD5 dd917ae4a04ce6fcee893fc9b19e3838
BLAKE2b-256 50990d96160b6a2b3d904473191d919e61d549e34b713a8c514128aed52d63b2

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 11f8df7d4cc87445b99d3858c6af64e360abda13d0ed3a81f43667f0e5daa59f
MD5 0673ab0462fae640004a15443bcd9205
BLAKE2b-256 2e5f1aed93c3da2c7d30f4d1d4e537ba098f55ee40bdbb590947655caf8a52d3

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1fbcad89db5c1ba95f8231e5b0e2b971a52088ef586d280f8108e8c3ed0889c3
MD5 caeccdc6a96efa91e24c8e6a8f3d1add
BLAKE2b-256 1fb3aa6b2c887b9db4bfbcc75186246e24bfb48936bde95b70f26b0b425d5b90

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 728e0384a5a0fd846f71f158d4b5b9a9184cce1935ce63ba74876a24527facfe
MD5 3b45d58b46f135d4183bfa0014e27673
BLAKE2b-256 da92746f0b4695ee5475f887a84c8d8e00d6a28bacd7d75eba6abaa219a5e2dd

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 906b44bec85039a2b84740f6aa80625ee5c817c421eb31b1a67f635d526c1421
MD5 258ba66d85d48e21d0bd0d2fea117913
BLAKE2b-256 01344139079675c5114e890e6bcc465d16942cfa7c39a2f4a9f227490dcc9da6

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241010-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241010-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 30671555df3ea776352260f885baef95a9d76133a30093c898d1561b8ad640c9
MD5 6464c77d2f4a0744c40c8ad40a85586a
BLAKE2b-256 43d34abb4b6872b7d966b6a25ac4c9592cb986ff7596b447dc00e35113e2d010

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page