Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.26.0.dev20241106.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.26.0.dev20241106-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241106-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.26.0.dev20241106-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241106-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.26.0.dev20241106-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241106-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.26.0.dev20241106-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241106-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.26.0.dev20241106-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_28_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241106-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.26.0.dev20241106-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241106-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.26.0.dev20241106.tar.gz.

File metadata

  • Download URL: aim-3.26.0.dev20241106.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.26.0.dev20241106.tar.gz
Algorithm Hash digest
SHA256 9ae7f4a45676650981ebdd8db9bad0f0f4263e082e5bf5bf2c3820ed267450b7
MD5 993e9706dd12e7c2375f48b13ad0826b
BLAKE2b-256 b14da13f49411efa0ff7808acf1565b06d06d68bb7ac6da87ddf36953ff9186f

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 26871927048aea1fcd73400f8ba144c84e20a0a3db2cced7577569294481eece
MD5 8ff067dcf46ce3cc1dc4968beae50627
BLAKE2b-256 95f863ed1f6698eff94086918cbde1dd8a6cf73a47521b800e287b37268ded10

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29d26aced90fafab0b45e617b6ddd5287ac3aa5e5c5bc32fcd2eb57d47fb793f
MD5 5a9c96af44cf14f01fdcc622cfd1c487
BLAKE2b-256 192f623fbc1509a239993887c3d5f49da429dd5a9ea0d86ac9d80eecb5eca90a

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f951cbe429a3edd40dae27200f4a12d5d46980190e66417368607d26f0ba3a3c
MD5 e5e048c382b5ff2111bce9e63e0401bf
BLAKE2b-256 36e1075eb3b13f0c7132b6f738a918b9364391f0a7f209acc2f787182445c8b5

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 efd539e49517d5d2ac8376e712d7bd3c876701299d6abca57347ef334264d101
MD5 c5c19ef2039be949822c6d007cf1a016
BLAKE2b-256 eae20bf8bad438e2c217357f57924beafab050a3c8275858a8e72b01b68dfdc0

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 52c395b37488989c7268f24992d46a4e28d6d638f9d83a5848009d28b5d863db
MD5 ff749f9b10654176828cf40a56d5c88f
BLAKE2b-256 c0a46fe1e72fb5e0b39f1557a9cde46b3555c203877a89b6f1ad5f11f811e871

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 243a8f6f4205a7fe57821c0f8c41e5823549372b82911bb6de0a4cff66b83377
MD5 11adef5721bdf67f5ec058a039478d17
BLAKE2b-256 1ced36914203f054c95284b5d2ee34fba99c3de4f5cb3b034bace928b8acbaf9

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d36f25af85fc706fec245cb365270ca5424bb465ca005fcca18726fddaf8471
MD5 a44e4f6c527d3dd128f00116c708e7f8
BLAKE2b-256 6db90cb747f0ef1be56e02008f9e7454f3bf5d99db3490f5a0d552ee8b80a816

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 82023c8090a8d45bfea98129d65113b2779fed98de9e181e0621ca0056a4ae20
MD5 f76abee0678947c49123d433088f4713
BLAKE2b-256 db0188775014989393fbe522beb409b0643c027bd276d6e09b6f52c5fbf5b200

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 46237723358bb1db41919a0536199702dc895a241e5842882d1531b910eb59e1
MD5 70566fde60057feae1f16144f80f1224
BLAKE2b-256 77eb232ecb664af867c4828dd51610881cd773b5d8e3f602b65cd15163ef11fb

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 ced45747c1b88b631c0b5f89be644105bd8af4016685cfde6725e38f8b8ca308
MD5 c7971d4a0693e58ca0691d7016b5f153
BLAKE2b-256 47360401119c648d4ad9396f3c72a51f2f9640d1205cd464ff1a008e27a04833

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c2104f4ae57a5d2fe511fe0324a9467b5d3ed2bd2bbc21ed6da03cdead285c8
MD5 389a5224b82604236d5bb3929d16620a
BLAKE2b-256 59a40ef6fe5ca353e36ebefe89504bc268d17b4466ab45eb3e382e4cb7d7cac8

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ea62122b6c78776d2c652afe50e40911d0542d1907b054f6801be39ce4bbc3e
MD5 cd1216bdc91f76cf57ceaf215eea29e6
BLAKE2b-256 9a56955c3836fac458ba07153570edbc8a5197ed5ed81a256de0e224145f335a

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c28451a32d035d073937ef0e72f8a3d5347c70d2bef9e7701ab07ef9fca397f9
MD5 9505ecbc5ead9edf04906f5193628e06
BLAKE2b-256 123132ff13d06c4eaf36647d9bbde2576cb991cd130f029d65d76d5c8a757674

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 354ffc0fc92d8ddc71cf0082e282f5083212ee581e6938b7ccbee524314a22df
MD5 68e1ba2603b4ac45c2b6d6746c2fddd3
BLAKE2b-256 11ee831de5597b5c0510298a6bc65121a17be4d2ca3fd54231d4c641a91b342e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 bf00cc87178534da571b0327389e12f9d0e1ecf3f5ab2f21454f2567e613c1ec
MD5 fb54423f2d4e62c4471aaef27454dd6d
BLAKE2b-256 3cb75649ae319af0e0e4b10a6ef6d938979ba03209649716c135c9b2e85157be

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40a91433063d5dfe1ae6c4660cd4d6c21285302187cac1e7d9ae32283f189165
MD5 4e7a189f5db9fdc5f64321f8be1c6cc3
BLAKE2b-256 027f803a65b89d198414bf686c0b6879165d0dfd64ea187c75de4e3041ad216b

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f5f89f8b4bbb92fb8b98fb80eab028737cb0c6ea922f9994e6ef2416ad9bcb7
MD5 c1cd4d5232f287cd9e4fdfacf9964bec
BLAKE2b-256 35293284c510ede1b6a4cfee53427a4fa228c80f81b71c6bf1c8e150aadbb2b1

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e42f7c91311863ffdc625d5f8c4c7c4bc743380673a3c3823042d7529923bbfc
MD5 7d8306b77f1e8a720ff1883437b677ae
BLAKE2b-256 18582c9f03b1dbe7ffa271763b79867532c0f3fb1862c9a97bbb89f0982dedb5

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8c5287b106d79aaff66d513473f953a77974ba79fcb275ddb24545b54328eae8
MD5 cf51a1ef5937a597b7894c64bfc88bce
BLAKE2b-256 b78eed4d5a21e741f9dab55832a3bb18a843bcf7a75c3c5ad0801ce841b9bee2

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 60e0ec626f8cd5be32405e93ca5576dedf1d51a3fd7e257a5183ef4f2a5dcd46
MD5 f0f10d2786d6a857ca31d08a4e3dc3be
BLAKE2b-256 27280709f87fc0b55faf4f5e7d0898c5938d76f865ffdac3a4fd7b4827812c95

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c087b2d9c578243e4f19cd4e9a9f2b7fbceb4409d57872d80f9fc2de8b5656c
MD5 2ce0f864823eef34c31b5e8c965d6c7d
BLAKE2b-256 d6bd7975ae1e77f72d78580b7fb2e87ab5ed39f4e3d66b16b1deebdf0b54e0b9

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4b0d02638e601eea26cccdcc3b92aaf4196cfaccb94e03b5f9e49491e53333c6
MD5 f0e49a3d03c57efa044e9fb1e53d4276
BLAKE2b-256 fb4d852e720e5800dea10d6e7b9defbf415d80d58f4183d934f2d2740f9a81b6

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 24a5af75b747ed67d2de1fb72efbe58da876c15ace31f4b689c971c20c6c15b6
MD5 f37d2dbf9051fef348b9fdd0a811fcd6
BLAKE2b-256 e8a551134b0b4d0a0560d748129990f0c940a571c69f84377cfcd40a9761dd6c

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 26acf7198c3d73cd19d8d37797ed24f419459f7e5ee6d0bd731c688b018ee69d
MD5 1061cf154186bb77e97cbc5af11a438b
BLAKE2b-256 a5452d5112e0b909014428fde871de8e672baef41f7bf7a371697eee993f89e6

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 428a6481dfc443f46e2ac097453c182e366757bf4b78ff12fc9680dfd9355a73
MD5 a09b60d56c97d2c56b723e7733971d45
BLAKE2b-256 b6807cc4e9e77217e453337d725e49203d9a859ce846acb3983eb3c6f9997e10

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 edba72a7dc2039a1207642e4a4ba77a8d7e4f45966d8c4415a090afac4734bc1
MD5 4e6c7e703030856ee31afd40eae7f92c
BLAKE2b-256 92c8d3643e2bb6689175580a408b00c163b281a35a9960d1f17a5dc82a654763

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241106-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241106-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d1053884ed818835e9af94e6771b2d1b1ccf8f6a38addedc2b150bce7997a9ce
MD5 885568bbfadeb6dfabaa9a9ec5299364
BLAKE2b-256 c8c388e4fc1bd3edff2ea8495652f107734256d1c4c1c57e433d7f3b7c11ca24

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page