Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.26.0.dev20241107.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.26.0.dev20241107-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241107-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.26.0.dev20241107-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241107-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.26.0.dev20241107-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241107-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.26.0.dev20241107-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241107-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.26.0.dev20241107-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_28_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241107-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.26.0.dev20241107-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241107-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.26.0.dev20241107.tar.gz.

File metadata

  • Download URL: aim-3.26.0.dev20241107.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.26.0.dev20241107.tar.gz
Algorithm Hash digest
SHA256 5d34b1309d42eee57e53767a4232c4ffa2ac9498d276f77aa471b9c8cef5062d
MD5 cc9c2dbbc9533aadf42d5d6cd3db9282
BLAKE2b-256 ea0c065f7715d10ccf238aa6e95e613c5883e48b32beef00286e7a49f3bd29eb

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 186a45eaf0bbf92cbe294bd01135cfde213b6ba9e40b1e4033a18d610bdbdddd
MD5 f5508ef393ac0532f38c1fc174433956
BLAKE2b-256 b1de94de084dc9a19e4682f9ca8eddc9f3b844a190b3eb9646d1dab9f25c62ce

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ddb6cee780f6b1dc643622ccaab4653640ebd94d3e19c5395c35e3e3cada55bb
MD5 76e4308d40109bd46c6af148319d1366
BLAKE2b-256 5e66d2239ed643a51e2b0e7d73f7b249c0a185d005fd99fa236016b43de941c4

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2b84f72115a98cf2c96c3ab0e8bc68f8304d75a515dfc732a8710f676de5a762
MD5 301a28f70a5dd2c655e774939cefc4c2
BLAKE2b-256 b7049d5eb76892d45c43f3275a9a60e7017f5b4c9e77a459cc5056028964bbf4

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 98b9c7c96e964a4699e25ca6c7f248193c58b0988eb7a3b662c586cae5601c24
MD5 07fa828a5ec075c240833e0d620b6cfe
BLAKE2b-256 9be8c46698b5c7ba5e68f30be7d8fd16555d35e733d62dfddfdf0cad886b5778

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 134cb5474b9234d79254fede7fcc2029c36885681d7a4290e190198c8e0356e2
MD5 2b0c8792ad5cc06baede552df8ed4994
BLAKE2b-256 535adcf2b71612bc565ea77fd398fda3f533eec2d7c1370a45f16152ca68fdc5

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8b6e186e0730640daeb596d926eb0e801dc3f92c4a67410e9b40a35b4464891
MD5 073d38acff7670a1061322051ff5095f
BLAKE2b-256 961599d560e69abb90633c00078e9591b274246f8926fe7ddd82ff131499cbdd

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9dca3d48195f826564b7353a1894773924ec2a8901ed9da59fea162d44717108
MD5 08686ce528f07651894e96f690ca298e
BLAKE2b-256 4bbb394ef6aabf859a9cd98d388ada5fc332a69076fbc38c45abce59e9c38912

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bc27e907ad7a91fa7061dbcae7523ef98613701e32ea9831af7d18c1852a32be
MD5 c38c231f8fa78c3810c457a9c6319c79
BLAKE2b-256 c115f807bd8b776b49230ccae485dbfd07fa11d430656d287df8dbd5ce574817

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6b5d93abcae7eef7bc5b08b8004218a50a894cf11f202eaf7006f099f44e13e6
MD5 cc0c91799177b64c0580690453d9bdc2
BLAKE2b-256 d4810ce054f22e5af9bd856440714f9db6f2cb291bbb8793e982cc0943f25cb5

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 2810963974ed363cce494a6f59351b3f5979ae6c74f4efcad87e3cd4affc12a0
MD5 66ae8941d2b203823e7ae3416a40c165
BLAKE2b-256 e9af5b56f4b36d650777b0bb8c55c03fbfeba7c733b0dca15bf5124338114433

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e246d7364cec721c811193c7126f3fa22b1b7335714eca64b22b7af977256c4d
MD5 91ed14af392d80af66acd2f288ba834c
BLAKE2b-256 fb53bae40344b7ccbe2e4352210df2d0ad34cc7fd78de88e011e79450fc15ad9

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 655968969c9cce3e703d090effc6fb4fdb135e747228ef7cc72a323682b6fae5
MD5 eaf04ffc1789396175c29531b16c2616
BLAKE2b-256 9f3458f118cc1218299d9a0c55f68c5f08e52b0b2a419c5e8174f09f1bc05431

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 17e3e8547d24c2eb1d41656432665d23615613a3745f331ba42f16d4422bce1f
MD5 b5e1075b490326d11260f4a4b44f6dec
BLAKE2b-256 00c605bf72509ac433ea5f90276fcbb45f0e6e4d61403e8565dab7279b450085

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fcc9537b57c0cc9c497d50ad59a6763959d2a2c3f06c2d12b68b379677dc72a8
MD5 79dc45bd319769e34d4a45f1c3da3e33
BLAKE2b-256 88111400125ea0999faa72ace13674db588a4f7c2888427efa190d0aad073280

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 9b9b9983a1a1d871cec89547c88dabfb2ef0a971d41625bf14a7e781e968be5f
MD5 c726c00baea910c3eec8658884e4937f
BLAKE2b-256 9a1422138091d7b180ccd3b7157a2431fc9761ba589a62d47022417bbf8ff68c

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6605f908efe276f96463f31c2bfe0cea8a48828f8f79556d27fa775bd9aa38b
MD5 8f6c5d2bae068d652070d737f9e53701
BLAKE2b-256 3966edc6367bbea69d0e0ed0fed9523e3dd961f249dd9811878ae85c2f313f93

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0559a8ded28c9e2f831dca1f4aa6de0622d87d0af4f251f283e8a321acf19fe
MD5 50b7b2bcf2ae0b45caf9416742fc6464
BLAKE2b-256 73cf6deb500c96530da0bd2f2d9aaad9c86352072d1e529643bdbf42a510c19d

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ee51c6289e88014023aa40ad2b8ad1082f7acd52aafb68546929becde14ba5ca
MD5 2b92d93c32cb2911355d4861ee5aad88
BLAKE2b-256 8b9aebe66850f42ff0b914a1c1a678534934be0d0461d718750ac2bb94cd82f3

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c566812ea1f0976c2ebdd34cdad1e269a91540500de970f40b39dba5e6265f41
MD5 c09f5b55baeef4715375032bf7525a1c
BLAKE2b-256 707f6d70da62caefe58828ab2d1ba42933d539f3348ac9b2587239d11da1ccc9

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 f2dac3d6965db0116cf8ea6af099a7c8b341d101f87960fd19e79750e1e5fe2a
MD5 14a405d3e672febc3b272e31cb7bfeb6
BLAKE2b-256 02dbba8ef0e130342cb8019ff91b2b81a7313c829932ded2c1a021805fbf2053

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2399860310cb33204afebee26c15a845e9944739197da9f804de5a2f7abf0e73
MD5 7adf83fd6d80adbd3326da4a65c4adbe
BLAKE2b-256 4919ab90fd49d59b96dc625ef1228aa7d272ccba9005bbfcdcc6e0b7f34519ca

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9ada588b3d4d08db64891f34d352a7a76ea416189048f9ddaf3f69ff8769f9e
MD5 77ed061ea4faf1a36d8a1f01c9c56317
BLAKE2b-256 0e926da004dfb0f6f1b52910c6085cc4f3fde9517f91d5c1601e028a710d8a52

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ad9bd3888626dc6bacf047b3ca1271dc6ef916490b55836e143e3658a7e23a4f
MD5 42caed45f271f09b3803d7c7c746eb12
BLAKE2b-256 7cac50349382493db0a870916142a1a80c4c50a3d510d6f6ed3d147e6d2336e7

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d1f382fd69ef3f654ff0cf732c1134a99a02c65d52e0dc434be5ca967887eb5a
MD5 5497451492a71deaa3582454ac8936a6
BLAKE2b-256 0c06ffc0e11d6c8abe19391a656f23fecd2e43ebeb0c8470323f77896e6a05a5

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 dd96ac9127aa09722bb742c290d2385a27ed4cc5fe8cd0968e2c0dcaa2cad596
MD5 6f0395f1ac088b32a2015c1512ecf9ba
BLAKE2b-256 5d73f2f66e1f7bfa5c4528ce948b703797e1cf2796e93ce85fafb4f5f3f820a2

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99262f598a296d04b9dbd08cf0189ae5bb0133a9cad90c19b9de2bf786f4262a
MD5 f81defb52d063df0c61cb782d575dadc
BLAKE2b-256 1e4e04c171ac6ceb67ac865dc6a9d482af553fabf43ffef3296634f31c4fea33

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241107-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241107-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6c56752e0b8ed13e946a3d5dde112549a84a98d10798b7384b093f46e98755b8
MD5 af4bfa3c54efc480ea3f13ac62359ece
BLAKE2b-256 458d26d93ed286f485c092fcd69193d1a81ae0d344348047bf4ef9a1d89a5c97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page