Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

An easy-to-use & supercharged open-source experiment tracker

Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically.

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosEcosystemQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

Aim's mission is to democratize AI dev tools 🎯


Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress
  • Logging and configurable notifications
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view
  • Runs grouping with tags and experiments

🎬 Demos

Check out live Aim demos NOW to see it in action.

Machine translation experiments lightweight-GAN experiments
Training logs of a neural translation model(from WMT'19 competition). Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experiments Simple MNIST
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech". Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflow Aim-spaCy
aimlflow Aim-spaCy
Exploring MLflow experiments with a powerful UI an Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

Migrate from other tools

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

Integrate Aim into an existing project

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

Query runs programmatically via SDK

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
Set up a centralized tracking server

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

Deploy Aim on kubernetes

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

TensorBoard vs Aim

Training run comparison

Order of magnitude faster training run comparison with Aim

  • The tracked params are first class citizens at Aim. You can search, group, aggregate via params - deeply explore all the tracked data (metrics, params, images) on the UI.
  • With tensorboard the users are forced to record those parameters in the training run name to be able to search and compare. This causes a super-tedius comparison experience and usability issues on the UI when there are many experiments and params. TensorBoard doesn't have features to group, aggregate the metrics

Scalability

  • Aim is built to handle 1000s of training runs - both on the backend and on the UI.
  • TensorBoard becomes really slow and hard to use when a few hundred training runs are queried / compared.

Beloved TB visualizations to be added on Aim

  • Embedding projector.
  • Neural network visualization.
MLflow vs Aim

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

  • Aim treats tracked parameters as first-class citizens. Users can query runs, metrics, images and filter using the params.
  • MLFlow does have a search by tracked config, but there are no grouping, aggregation, subplotting by hyparparams and other comparison features available.

UI Scalability

  • Aim UI can handle several thousands of metrics at the same time smoothly with 1000s of steps. It may get shaky when you explore 1000s of metrics with 10000s of steps each. But we are constantly optimizing!
  • MLflow UI becomes slow to use when there are a few hundreds of runs.
Weights and Biases vs Aim

Hosted vs self-hosted

  • Weights and Biases is a hosted closed-source MLOps platform.
  • Aim is self-hosted, free and open-source experiment tracking tool.

🛣️ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

  • The Backlog contains the issues we are going to choose from and prioritize weekly
  • The issues are mainly prioritized by the highly-requested features

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

  • Aim SDK low-level interface
  • Dashboards – customizable layouts with embedded explorers
  • Ergonomic UI kit
  • Text Explorer
Next-up

Aim UI

  • Runs management
    • Runs explorer – query and visualize runs data(images, audio, distributions, ...) in a central dashboard
  • Explorers
    • Distributions Explorer

SDK and Storage

  • Scalability
    • Smooth UI and SDK experience with over 10.000 runs
  • Runs management
    • CLI commands
      • Reporting - runs summary and run details in a CLI compatible format
      • Manipulations – copy, move, delete runs, params and sequences
  • Cloud storage support – store runs blob(e.g. images) data on the cloud
  • Artifact storage – store files, model checkpoints, and beyond

Integrations

  • ML Frameworks:
    • Shortlist: scikit-learn
  • Resource management tools
    • Shortlist: Kubeflow, Slurm
  • Workflow orchestration tools
Done
  • Live updates (Shipped: Oct 18 2021)
  • Images tracking and visualization (Start: Oct 18 2021, Shipped: Nov 19 2021)
  • Distributions tracking and visualization (Start: Nov 10 2021, Shipped: Dec 3 2021)
  • Jupyter integration (Start: Nov 18 2021, Shipped: Dec 3 2021)
  • Audio tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Transcripts tracking and visualization (Start: Dec 6 2021, Shipped: Dec 17 2021)
  • Plotly integration (Start: Dec 1 2021, Shipped: Dec 17 2021)
  • Colab integration (Start: Nov 18 2021, Shipped: Dec 17 2021)
  • Centralized tracking server (Start: Oct 18 2021, Shipped: Jan 22 2022)
  • Tensorboard adaptor - visualize TensorBoard logs with Aim (Start: Dec 17 2021, Shipped: Feb 3 2022)
  • Track git info, env vars, CLI arguments, dependencies (Start: Jan 17 2022, Shipped: Feb 3 2022)
  • MLFlow adaptor (visualize MLflow logs with Aim) (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Activeloop Hub integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • PyTorch-Ignite integration (Start: Feb 14 2022, Shipped: Feb 22 2022)
  • Run summary and overview info(system params, CLI args, git info, ...) (Start: Feb 14 2022, Shipped: Mar 9 2022)
  • Add DVC related metadata into aim run (Start: Mar 7 2022, Shipped: Mar 26 2022)
  • Ability to attach notes to Run from UI (Start: Mar 7 2022, Shipped: Apr 29 2022)
  • Fairseq integration (Start: Mar 27 2022, Shipped: Mar 29 2022)
  • LightGBM integration (Start: Apr 14 2022, Shipped: May 17 2022)
  • CatBoost integration (Start: Apr 20 2022, Shipped: May 17 2022)
  • Run execution details(display stdout/stderr logs) (Start: Apr 25 2022, Shipped: May 17 2022)
  • Long sequences(up to 5M of steps) support (Start: Apr 25 2022, Shipped: Jun 22 2022)
  • Figures Explorer (Start: Mar 1 2022, Shipped: Aug 21 2022)
  • Notify on stuck runs (Start: Jul 22 2022, Shipped: Aug 21 2022)
  • Integration with KerasTuner (Start: Aug 10 2022, Shipped: Aug 21 2022)
  • Integration with WandB (Start: Aug 15 2022, Shipped: Aug 21 2022)
  • Stable remote tracking server (Start: Jun 15 2022, Shipped: Aug 21 2022)
  • Integration with fast.ai (Start: Aug 22 2022, Shipped: Oct 6 2022)
  • Integration with MXNet (Start: Sep 20 2022, Shipped: Oct 6 2022)
  • Project overview page (Start: Sep 1 2022, Shipped: Oct 6 2022)
  • Remote tracking server scaling (Start: Sep 11 2022, Shipped: Nov 26 2022)
  • Integration with PaddlePaddle (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Integration with Optuna (Start: Oct 2 2022, Shipped: Nov 26 2022)
  • Audios Explorer (Start: Oct 30 2022, Shipped: Nov 26 2022)
  • Experiment page (Start: Nov 9 2022, Shipped: Nov 26 2022)
  • HuggingFace datasets (Start: Dec 29 2022, Feb 3 2023)

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-3.26.0.dev20241114.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

aim-3.26.0.dev20241114-cp312-cp312-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241114-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aim-3.26.0.dev20241114-cp312-cp312-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241114-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-3.26.0.dev20241114-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_28_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241114-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-3.26.0.dev20241114-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241114-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-3.26.0.dev20241114-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_28_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_24_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241114-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-3.26.0.dev20241114-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-3.26.0.dev20241114-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-3.26.0.dev20241114.tar.gz.

File metadata

  • Download URL: aim-3.26.0.dev20241114.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-3.26.0.dev20241114.tar.gz
Algorithm Hash digest
SHA256 a226a14e58ed7ebfcce41719afa44a4b77d7ef164bb448710b757045e71e08e3
MD5 02a208ba87e6c2442b5cdb95a7e92525
BLAKE2b-256 8920ae48582c8d7c0c6987faf8fa30da565a860139f456e42d62029a18cd36e7

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 119394ba328dd095a5f6f29c71ac7814f46895e707df301233ac06f956debb8b
MD5 346211a48effd230c1f1f9132bf39b63
BLAKE2b-256 561a87b62a5228540788bb6dd27f4f06c9418880c925f92732ccbcd09908bb98

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 284ce64120131096765660f7c40b1817080b22fe4979a8024e0d097805d04b89
MD5 b7df8b88e0f7530996aaa5d6cdfc3206
BLAKE2b-256 faf59eb4b308f75fa3e219929ff8d2210b0171bd9f70c0e7d374d7cee4f8ed47

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6246b219e8256af2f1fd163f7b21a9cdb5ee81130b68fb0f053551121808a091
MD5 044b69df18f607e6097220ee8e79ade2
BLAKE2b-256 dfda1bfbd160fefc7037c2904cadee53c999c15b04d7822c4b062aa620d82243

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 20bf99f36e46d0eff6a5ceef4f0c75897e885070899b039e421282350dd01ccd
MD5 27563be812a532cf29c39c3dc7c7709d
BLAKE2b-256 43e935c68ed3b94e68249560d9768bda0b819ca2cc17039123f1f4cb5b07b4a1

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 18ede2018b9c5b5e48ddcf79d747256244a3aab967c10175ffb1d42bd879614a
MD5 44b2490039e7583e8c8b9823a67e596b
BLAKE2b-256 0399b23551484a897bbe04cdede8f03fe7eb169382becd37ec17b6a144282d70

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54d552f407742451775b209f09694f60b515404ef3d5ed0329812c54dbe94a48
MD5 fae72aa340af5629fa3d3cf3c3b364dc
BLAKE2b-256 d755e8b7da176455bb667cc9d34ff53a2b98aa4ad793b54adc63897cffcd5820

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08f642ff59dcc7c26949f53ef4442cc17672d9e94b9e566993e8a90c9de69443
MD5 3740dc633e0423962624fec34ea984f9
BLAKE2b-256 de7902da1cc12ebc846cc7515d896f82f1804d8e14849e6de5b71b37e7c8324c

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bf7ea350ac08bbacab3bed1a1c6d802dc68577862df4857b00aab0416ec985d4
MD5 f83727263acd407848bfbe9ebbcad618
BLAKE2b-256 4e0302bcf00715365f9bdbd04d91c6a6da1efb8c30ca118fa45c37c4ae5292a6

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 40ca5c4c1951026d8f9174d298b9036028e4ea6e4098994d68686f634b650708
MD5 5ead5231baa2df99071a0214d44254cb
BLAKE2b-256 93d14d588b9d4ae2ccb73226cce4766808b5b5c242e0ac6f9cdcf07c55218b67

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 5a5b77ae98ebbd5504b2718cab6cb49bdf2f8f760df0ef4fb865fdb2b0bfcd6a
MD5 da9a91b2b556ee8c8bf3231adbe154f3
BLAKE2b-256 c2b6bc980c518c823eff2327cecdbd02fb1051ff701e3762fda5241305b6a1ad

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e5453bf77657b7fc428f8fb503516cec5579742ebc95695702dd04b89c5a36e
MD5 12af35dd936bdea6e1560d45055df240
BLAKE2b-256 3096d6f02b7205d40777cd6d433361d8e65ce022e81ae714dda88a1aab49b21f

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a06c81907fbadceb3aa131b2bff069857a4a1262dbf31c73066bbaf4fd390a5a
MD5 686357f660b531929253334ea6df8bdb
BLAKE2b-256 b6f78e0a8a5d1083845454c012425c1bc0e0c210cee338be5c0516ce4977bcdb

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 318364811f8509fdea0c69e224335f98f12103c09b68da26befdec8425edfc3b
MD5 4b609f2612395c5ac75ae6eaa76c4d95
BLAKE2b-256 6a7b741c21e3903dce4065064ab4b75be3f672d376537eb471875d054968abd9

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b1f052ee5b8b3dce362bee4b8f38bcff7b498f2de1e3670105712173491f4aeb
MD5 674396d4458936623f91630a6bac8ca2
BLAKE2b-256 c9603141e8321deee33f907cb159a8d285944cef79c35f97e1b5134ffa484cb7

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 cd689a4020dcd3de3cac928e9dedabf7fa92171f2dfec1249a90dd23a7a82669
MD5 43bbe8ae23358d7b1fccbbccd0388818
BLAKE2b-256 73dc04fa0748a5fb838b76593cd18d431327d937dcdcdbaf4a7462ffaee9f58e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7201b06d6bb7e5476b62935efb50706369e90a39ef975387319e624650f637d
MD5 ed28419ef1823009174366f412b5b908
BLAKE2b-256 f1d612a8b55a32968f4250d04a1779060805dbb05fc59e44fe89f683ac69f574

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0a3cc359b066fef7268900366b65b15a5bbf83dbcbec4110abad9ea0b276f03c
MD5 990c6d1cec2ec0f48c656ab82cddc1d4
BLAKE2b-256 d6be0a2cb8c49016a8bb063693f92f2b5ea239f459a275784a2907d0c54db045

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 00f48211b20286bc0e95542e3ee4b16c046624f7c0088af1b961c7eea908aaed
MD5 00c11a02fe2fae42fe4daba627c3b946
BLAKE2b-256 dc9e309d2a49c961023cee83870ed07be25e90b1c5f6b80e582d5b2d2353d759

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 20e94597fc9dd4c8718ecfc23986aacd7c212af8a56cda64c531bbec4237f5b2
MD5 c3da2bb3d23713161e2ec7fd18987593
BLAKE2b-256 6bfb72216827de8d4c780a1cf09f7c86397a091cd8756e9f8919cd03fd8121e0

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 420129e8183219d88c74453a6e36f85a0961642bcc165f9528106dcb7be85cb8
MD5 f3dd5b833e25c85aa6d7805c4aa9a087
BLAKE2b-256 f2bbe222bab1ae80d0307466419f567ddfd186641cdeae45b7e2ee8842cc73c1

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2afbd5f2528f79f0c9e694d1be835b6f315d623ec3ff61783b4a0647d764bd60
MD5 c2d25c46fe3315e75366ca37d678fd69
BLAKE2b-256 2b3d4f35cd55bc8907e4c11d0eb3a2c3b12897f2d6112075736d67700a5fb231

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b9485d1bc093d6cfd07913e449265f6feb7f6ee307629941484f73fb083e9c81
MD5 a3f8f581697d75451a9465ab0ac093d6
BLAKE2b-256 35dc4313b118734200787e5cf39008c36f3e80308111aaed5c753313211b8a8e

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ddf19d0dce2afe5f69c39650ab873a1b214a8bce3bd539e727da02a8413a4af2
MD5 6c196639a77b6bf7dbeda9aec84912db
BLAKE2b-256 42aac879090cf2e5326587c415f565eccef0dc65842fe546d8838ac1dd29c454

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9cdf03c90b4910302f5d81c339137d53be1428e7f81ea5e4bd58de1aef038ebe
MD5 ee2d3e07e4c9403cb2f6efe8f4628e0e
BLAKE2b-256 f710659ced0d371863902f60d94e2a746edfd24bf1ad480a79b348ff0332b810

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 b46a740dd4cd419102900cb00606b909ce46a095fd212850345140147cd283ef
MD5 7338f5f7fcd9e5838963da5c7c3e7ad7
BLAKE2b-256 245e27acd56443cc5286b5e3dcc5e4fe8f2886b903d3450a071fb2e2ddae0d87

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79ecc240c3ed29feb20c10c5bf1f0e0c3fac5bea875aec8b4743ce042889058d
MD5 b7357e6e811dab6f3ae0e27bf7054678
BLAKE2b-256 4f3dc190463e79fa28281608acd0d790d8159d416e93610245edde3c8d0c87e8

See more details on using hashes here.

File details

Details for the file aim-3.26.0.dev20241114-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-3.26.0.dev20241114-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 29f4bc17207bfcef0627d4511e6b64dfcda28fa82e3ee25dc5ed4020552b70aa
MD5 1f427b54aec80b161cdeb32b85fa1fe5
BLAKE2b-256 208fe36bbeb66875ba47e3d1ca7f231c172729b0c1ed06dbb84b9d1369437c85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page