Skip to main content

A super-easy way to record, search and compare AI experiments.

Project description

Drop a star to support Aim ⭐ Join Aim discord community

⚡ ⚡ Aim 4.0 stable has been released! ⚡ ⚡ !!


Open-source modular observability for AI Systems.

Easily log, connect and observe any parts of your AI Systems from experiments to production to prompts to AI system monitoring.


Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues



SEAMLESSLY INTEGRATES WITH:


TRUSTED BY ML TEAMS FROM:


AimStack offers enterprise support that's beyond core Aim. Contact via hello@aimstack.io e-mail.


AboutDemosDefault logging appsQuick StartExamplesDocumentationCommunityBlog


ℹ️ About

Aim is an open-source operating system for logs. With Aim you can build, run and combine any kind of logging applications - experiment tracking, production monitoring, AI System (LLM-based) monitoring, usage monitoring etc.

The Logging applications are typically a combination of these components:

  • The types and relationships of the data being logged
  • The observability UI over the data logged
  • Automations over the data logged

Aim comes installed with a number of default logging apps:

  • Base App - a basic generic log exploration and the logging primitives
  • AI Experiment Tracking App - log and explore your machine learning experiments. Includes integrations with the majority of leading ML frameworks.
  • AI Systems Tracing and Debugging Apps - a combination of variety of apps that log from langchain to llamaindex traces all in one place.

Apart from running the logging apps, Aim comes with explorers and reports.

  • Explorers are advanced logs comparison tools for specific kind of logs - they allow to compare 1000s of sessions of metrics, images, text, audio and other types of data.
  • Reports are embedded knowledge-base that operate with the apps and explorers seamlessly to enable capture the knowledge built on top of the logged data from the observations through Aim apps and explorers.

With the rise of AI Systems and the challenges it brings forward, logging apps are going to be a crucial part of the software.

Our mission is to democratize developer tools for building AI.


Base App

A general observability over anything logged with Aim.

Visualize all the logs ever logged with Aim for the given project 🗺️
Base types to log common artifacts such as Images, Audio objects, Figures, Metrics
High-level overview of the logs, the types logged and the respective sessions/ containers
Deep-dive into each type of the log

Experiment Tracking App

Log Metadata Across Your ML Pipeline 💾 Visualize & Compare Metadata via UI 📊
  • ML experiments and any metadata tracking
  • Integration with popular ML frameworks
  • Easy migration from other experiment trackers
  • Metadata visualization via Aim Explorers
  • Grouping and aggregation
  • Querying using Python expressions
Run ML Trainings Effectively ⚡ Organize Your Experiments 🗂️
  • System info and resource usage tracking
  • Real-time alerting on training progress (upcoming)
  • Detailed run information for easy debugging
  • Centralized dashboard for holistic view

AI Systems Tracing Apps

Log Inputs, Outputs and Actions of Executions 🤖 Visualize & Compare Executions Steps via UI 🔍
  • Track all the prompts, generations of LLMs
  • Track all the inputs, outputs of tools
  • Capture chains metadata
  • Deep dive into single execution steps
  • Compare executions side-by-side

🎬 Demos

Check out live Aim demos NOW to see it in action.

Tracing LangChain-based chatbot executions

View Demo  |  View Code

Tracing LlamaIndex query executions

View Demo  |  View Code

Tracking PyTorch-based CNN trainings

View Demo  |  View Code

🌍 Default logging apps

Aim comes pre-installed with a wide variety of apps. Here is the full list:

App Name Description Category Docs Source
base Base Aim app for general observability over anything logged with Aim. Includes base types to log common artifacts, such as Image, Audio object, Figure, Metric. Base docs source
docs Use this Aim app to access Aim docs. Docs - source
langchain_debugger Debugger for LangChain that logs LLMs prompts and generations, tools inputs/outputs, and chains metadata. AI Systems Tracing docs source
llamaindex_observer Debugger and observer for LlamaIndex. Logs metadata like retrieval nodes, queries and responses, embeddings chunks, etc. AI Systems Tracing docs source
experiment_tracker App for tracking and exploring ML experiments. Integrations with various ML libraries, including Acme, CatBoost, fastai, Hugging Face Transformers, Keras, Keras Tuner, LightGBM, MXNet, Optuna, PaddlePaddle, PyTorch Ignite, SDB3, and XGBoost. Experiment Tracking docs source

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aimstack.base import Run, Metric

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Init a metric
metric = Metric(run, name='loss', context={'subset': 'training'})

for i in range(1000):
      metric.track(i, epoch=1)

3. Start Aim server

aim server

4. Start Aim UI

aim ui

🛣️ Roadmap

TODO:

👥 Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aim-4.0.3.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

aim-4.0.3-cp311-cp311-manylinux_2_24_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ x86-64

aim-4.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aim-4.0.3-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aim-4.0.3-cp311-cp311-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aim-4.0.3-cp310-cp310-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ x86-64

aim-4.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aim-4.0.3-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aim-4.0.3-cp310-cp310-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aim-4.0.3-cp39-cp39-manylinux_2_24_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

aim-4.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aim-4.0.3-cp39-cp39-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aim-4.0.3-cp39-cp39-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aim-4.0.3-cp38-cp38-manylinux_2_24_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

aim-4.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aim-4.0.3-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aim-4.0.3-cp38-cp38-macosx_10_14_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

aim-4.0.3-cp37-cp37m-manylinux_2_24_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

aim-4.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

aim-4.0.3-cp37-cp37m-macosx_10_14_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file aim-4.0.3.tar.gz.

File metadata

  • Download URL: aim-4.0.3.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for aim-4.0.3.tar.gz
Algorithm Hash digest
SHA256 47f7ebc97abcd76b4f447e83b16ba899618efbf31bb4b473137c0ee13ed764d3
MD5 a49007a7eeeb4e19057aca816621d144
BLAKE2b-256 5012a5a7bf25fd6105558d11afbd3f7500aa63283494e429296746c821354590

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp311-cp311-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp311-cp311-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 1b9e07de27de66d6814ee39643d36dedff6d7b2098d8feb36fa1e1c0e481b530
MD5 e607209a108747698481519562da96b8
BLAKE2b-256 890593bafa33f89aad0cfd40b2f9af136d754b85597c56a929fe030548e1f3dd

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91d032e972e9959fc7fd82b836f886c121b8007448dc0fd05200fc00e3a3ae46
MD5 a0f93907a47a7da11ef004e2df5f1e77
BLAKE2b-256 b47fb6fa84b5209ce7c15e7bb57738dc84798f2c34aacdce8988b8b0f10a83a0

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9bbfd448d5ef588c7a6f56ce04da79928783d13b43f0629c36b6628176d746e
MD5 f73b6e30cff636ac2bd041c32e235f4a
BLAKE2b-256 2e4daf9089c6f959e18126f06470dfbf68742470b321d4610111e0a8eb3319ed

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2e4af62500766dacdb18f8edc965598b8ff6f3a74fec83a0dc0fd21a482f46a1
MD5 8ed98a678a92324e63659ac32fe56f18
BLAKE2b-256 3eb3d40aded0a63deb7779cc0afa76b5b188ee5c723364490e17177bc4ce50b6

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp310-cp310-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp310-cp310-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 f10d09893db3ad07f51b7b405c8a1a8cdb2ba42202aabf1dd43b6dbc13b8f1c2
MD5 211b87db9744e150709216e58c40c163
BLAKE2b-256 4f33057c67ac48a5c00fafef76eab9e3eae84611da409038f7fcad67fb1aca1b

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7285cdd60b92c17b49d807e256b30f5c76281ed72741d70f0504175c34992c9
MD5 e9922dbce2664801bbce284c05b62b18
BLAKE2b-256 64ab22472662abddba00af97117ad8306096fb6f7d6f30728cc831c124589c4f

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea817e57beb760e37d314e4143f15ee40b2ce62c0cf7f83106d9848ce1af3b4f
MD5 718fde3e3d848015249671afe3ca2652
BLAKE2b-256 305809db9d65996f6676186c52f0251971fa79324f6dc737e4264f69c4db332d

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 38063010dd9051a9358fb4a77ab09aac3ecda28de13dc93ecc6035a3b1cfe1b4
MD5 9b2367529b39c0804bd6d22de6cc01f1
BLAKE2b-256 c04bc008cc6e373bd91b610f1af30cfce71eb5ca0e02a3d3f4ca39e62336a7b2

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 0847d285bf6187e4623eac08f8b0bd7fe82d37b62a56897fe977ea2b6222c691
MD5 9bda798d015c217a452a727bea162d73
BLAKE2b-256 1f90bb5dfec56342ff056faa9276ddfa3b80ca8a9e997e26508112ed966b6d04

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45dd33626bea4a2a4b1edf27dfd4c71673d1a4575ef817bbc9af4b8b1bea9c37
MD5 7eb4406d5c130bbdfd6507dde90ca6b0
BLAKE2b-256 878bb5f95a0f6a66f4e5ae5b7bf70e02d46a4cd44757abc5e056a9bfe539507e

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1dc2303b415682f1bbb99eaca2c508e5986e3d7ae0a625416e2d2b73016b807d
MD5 d41cb76ea97b6c6327d8a13ac6046ef6
BLAKE2b-256 3304c6a4754718294242a743ed6d2692c7645ed28984af5503bc8e4074ec6b19

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b5733fa8375cc52bdad14f864fdb5ba0b8d5aaa9b57c1842bacf4810625279d9
MD5 b26dee03f48eae33714b43754239764a
BLAKE2b-256 156cfd78cb782da9eb6e79f867f8cd620efc89d92161edc15869344168b08d5b

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 eef6b531c8bae31f6770d0683d21b008ae20ce6f79991a1aa40a1bc7945c3c14
MD5 c4a5022a4565e5e936ae07e6861feb6e
BLAKE2b-256 193bed3c0ab4487efb08d147b61cc2450d670e07e71321497fcea1cd629c6139

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c2e6e5e707e460bd1eb7812ffb78e620f3dd42519d3fad30eabdb2877054dbe
MD5 3fd1f75746e38f569d460e41d34dab21
BLAKE2b-256 7fc1d672fb5d44ee7315a1cd37d96ea07025920ba68751088538b4cecea74aa7

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ea72bcd6480cc6dc7e658071484c0082d1e203d54a094b6e14d80b480d60c70
MD5 821fb5a03df845fdbb1c46b6d7f5a084
BLAKE2b-256 c0701e7bd864d3b61b829b90e5744c1724028ee2994fe4a8251eb62d7f4493ca

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bc0a575064d6c26de2df3e241e5dd7d5a77b1ea3e50e38e8ea9d35d95bf67b6d
MD5 2963998bfeb1b604b8ea77acb47e08b5
BLAKE2b-256 7a7a342439fd07bf5d7063c4b6772a81c077aa2a4b006c3abf4a5485c5d1e6e8

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 fb9c2b0388c8a4a0b91334043b2361772e36de7b03e93d8b607683aed64c5b83
MD5 0f666daffaed21256d3cfc69ddcc8050
BLAKE2b-256 8d1ac2ef1e2f49a8b6c5908097b13140794e7e599efb0c025695f61171e2328b

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75ce89c8c541036bbf4681644af0b084bb517ee3f3741198ae493b047867496c
MD5 e7fad82e8ea2424ec2b964e47c6cfb96
BLAKE2b-256 ab17d0272b4d80a036f6c074da9346db54b7525eb251ca66c6a9f20c04f8446b

See more details on using hashes here.

File details

Details for the file aim-4.0.3-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aim-4.0.3-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aadbfb89ae1d9fbc2354b6835c923634b2de9f2e07766a39fe091f90dee51bc0
MD5 8d65a0d7e956c8a037e789ecb6dda489
BLAKE2b-256 702bfb52bcf55277e4f3efd97cb565af7b3f3caefdc308444b1f4f482648f5f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page