Skip to main content

Generated from aind-library-template

Project description

aind-dynamic-foraging-models

License Code Style semantic-release: angular Interrogate Coverage Python

AIND library for generative (RL) and descriptive (logistic regression) models of dynamic foraging tasks.

User documentation available on readthedocs.

Reinforcement Learning (RL) models with Maximum Likelihood Estimation (MLE) fitting

Overview

RL agents that can perform any dynamic foraging task in aind-behavior-gym and can fit behavior using MLE.

image

Code structure

image

Implemented foragers

  • ForagerQLearning: Simple Q-learning agents that incrementally update Q-values.
    • Available agent_kwargs:
        number_of_learning_rate: Literal[1, 2] = 2,
        number_of_forget_rate: Literal[0, 1] = 1,
        choice_kernel: Literal["none", "one_step", "full"] = "none",
        action_selection: Literal["softmax", "epsilon-greedy"] = "softmax",
      
  • ForagerLossCounting: Loss counting agents with probabilistic loss_count_threshold.
    • Available agent_kwargs:
        win_stay_lose_switch: Literal[False, True] = False,
        choice_kernel: Literal["none", "one_step", "full"] = "none",
      

Here is the full list of available foragers:

image image

Usage

RL model playground

Play with the generative models here.

image

Logistic regression

See this demo notebook.

Choosing logistic regression models

Su 2022

Untitled

$$ logit(p(c_r)) \sim RewardedChoice+UnrewardedChoice $$

Bari 2019

Untitled

Untitled

$$ logit(p(c_r)) \sim RewardedChoice+Choice $$

Hattori 2019

Untitled

$$ logit(p(c_r)) \sim RewardedChoice+UnrewardedChoice+Choice $$

Miller 2021

Untitled

$$ logit(p(c_r)) \sim Choice + Reward+ Choice*Reward $$

Encodings

  • Ignored trials are removed
choice reward Choice Reward RewardedChoice UnrewardedChoice Choice * Reward
L yes -1 1 -1 0 -1
L no -1 -1 0 -1 1
R yes 1 1 1 0 1
L yes -1 1 -1 0 -1
R no 1 -1 0 1 -1
R yes 1 1 1 0 1
L no -1 -1 0 -1 1

Some observations:

  1. $RewardedChoice$ and $UnrewardedChoice$ are orthogonal
  2. $Choice = RewardedChoice + UnrewardedChoice$
  3. $Choice * Reward = RewardedChoice - UnrewardedChoice$

Comparison

Su 2022 Bari 2019 Hattori 2019 Miller 2021
Equivalent to RewC + UnrC RewC + (RewC + UnrC) RewC + UnrC + (RewC + UnrC) (RewC + UnrC) + (RewC - UnrC) + Rew
Severity of multicollinearity Not at all Medium Severe Slight
Interpretation Like a RL model with different learning rates on reward and unrewarded trials. Like a RL model that only updates on rewarded trials, plus a choice kernel (tendency to repeat previous choices). Like a RL model that has different learning rates on reward and unrewarded trials, plus a choice kernel (the full RL model from the same paper). Like a RL model that has symmetric learning rates for rewarded and unrewarded trials, plus a choice kernel. However, the $Reward $ term seems to be a strawman assumption, as it means “if I get reward on any side, I’ll choose the right side more”, which doesn’t make much sense.
Conclusion Probably the best Okay Not good due to the severe multicollinearity Good

Regularization and optimization

The choice of optimizer depends on the penality term, as listed here.

  • lbfgs - [l2, None]
  • liblinear - [l1, l2]
  • newton-cg - [l2, None]
  • newton-cholesky - [l2, None]
  • sag - [l2, None]
  • saga - [elasticnet, l1, l2, None]

See also

Installation

To install the software, run

pip install aind-dynamic-foraging-models

To develop the code, clone the repo to your local machine, and run

pip install -e .[dev]

Contributing

Linters and testing

There are several libraries used to run linters, check documentation, and run tests.

  • Please test your changes using the coverage library, which will run the tests and log a coverage report:
coverage run -m unittest discover && coverage report
  • Use interrogate to check that modules, methods, etc. have been documented thoroughly:
interrogate .
  • Use flake8 to check that code is up to standards (no unused imports, etc.):
flake8 .
  • Use black to automatically format the code into PEP standards:
black .
  • Use isort to automatically sort import statements:
isort .

Pull requests

For internal members, please create a branch. For external members, please fork the repository and open a pull request from the fork. We'll primarily use Angular style for commit messages. Roughly, they should follow the pattern:

<type>(<scope>): <short summary>

where scope (optional) describes the packages affected by the code changes and type (mandatory) is one of:

  • build: Changes that affect build tools or external dependencies (example scopes: pyproject.toml, setup.py)
  • ci: Changes to our CI configuration files and scripts (examples: .github/workflows/ci.yml)
  • docs: Documentation only changes
  • feat: A new feature
  • fix: A bugfix
  • perf: A code change that improves performance
  • refactor: A code change that neither fixes a bug nor adds a feature
  • test: Adding missing tests or correcting existing tests

Semantic Release

The table below, from semantic release, shows which commit message gets you which release type when semantic-release runs (using the default configuration):

Commit message Release type
fix(pencil): stop graphite breaking when too much pressure applied Patch Fix Release, Default release
feat(pencil): add 'graphiteWidth' option Minor Feature Release
perf(pencil): remove graphiteWidth option

BREAKING CHANGE: The graphiteWidth option has been removed.
The default graphite width of 10mm is always used for performance reasons.
Major Breaking Release
(Note that the BREAKING CHANGE: token must be in the footer of the commit)

Documentation

To generate the rst files source files for documentation, run

sphinx-apidoc -o doc_template/source/ src 

Then to create the documentation HTML files, run

sphinx-build -b html doc_template/source/ doc_template/build/html

More info on sphinx installation can be found here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aind_dynamic_foraging_models-0.11.2.tar.gz (3.8 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file aind_dynamic_foraging_models-0.11.2.tar.gz.

File metadata

File hashes

Hashes for aind_dynamic_foraging_models-0.11.2.tar.gz
Algorithm Hash digest
SHA256 7550b084514c929e5b71570cb44a846ff8ec74cebbbbd62b8f18d1cad3d488db
MD5 45b77b962ac5070b88a4610aad06e1a7
BLAKE2b-256 62403307d9eefab05270f2319930c9fc2f0a58e4aec3f649fa21be5cf108c09f

See more details on using hashes here.

File details

Details for the file aind_dynamic_foraging_models-0.11.2-py3-none-any.whl.

File metadata

File hashes

Hashes for aind_dynamic_foraging_models-0.11.2-py3-none-any.whl
Algorithm Hash digest
SHA256 961efd4e5a360f79369b0aac5703b8511146b818d1caaf546a49d853161ee5c3
MD5 1d9f830ae8cfc4453e742f07a39cc5a0
BLAKE2b-256 c0f7e3f124807bfda6326313b2bcfbf7f83622f49d9424500c3e55e0d9396b73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page