Skip to main content

Ainda Package made for python lovers. This is inteded to be used on ainda private cloud

Project description

import aindapy import random import time import json import datetime

from numpy.core.numeric import _correlate_dispatcher

import logging

import http.client as http_client

http_client.HTTPConnection.debuglevel = 1

logging.basicConfig()

logging.getLogger().setLevel(logging.DEBUG)

requests_log = logging.getLogger("requests.packages.urllib3")

requests_log.setLevel(logging.DEBUG)

requests_log.propagate = True

aindapy.config(logLevel=1)

auth = aindapy.Auth( apiUrl='https://aindaanalytics.com/ainda/api/', userName='asdfasdfasdfsdfsdf', passWord='asdfasdfsdf' )

The datasource now accepts only the ids, so pls check what is the correct id for it.

Demo WareHouse dataWareHouseId=7, dataSourceId=20

Ainda Packaging Line WareHouse dataWareHouseId=8, dataSourceId=22

dataSource = aindapy.DataSource( auth=auth, dataWareHouseId=7, dataSourceId=20 )

Generate Data for graphics that are not timeseries

data = aindapy.Data(auth=auth, dataSource=dataSource, bufferSize=1000)

Generate Data Sample for pie

data.deleteDataKeys([ 'basicdemo/pie1', 'basicdemo/pie2', 'basicdemo/bar1', 'basicdemo/bar2', 'basicdemo/bar10Columns', 'basicdemo/bar50Columns', 'basicdemo/scaleline250points', 'basicdemo/scaleline500points' ]) data.addToBuffer('basicdemo/pie1', random.randint(50, 150), 'Ilha 1') data.addToBuffer('basicdemo/pie1', random.randint(70, 180), 'Ilha 2') data.addToBuffer('basicdemo/pie1', random.randint(10, 75), 'Ilha 3') data.addToBuffer('basicdemo/pie1', random.randint(25, 45), 'Ilha 4')

data.addToBuffer('basicdemo/pie2', random.randint(50, 150), 'Ilha 1') data.addToBuffer('basicdemo/pie2', random.randint(70, 180), 'Ilha 2') data.addToBuffer('basicdemo/pie2', random.randint(10, 75), 'Ilha 3') data.addToBuffer('basicdemo/pie2', random.randint(25, 45), 'Ilha 4') data.addToBuffer('basicdemo/pie2', random.randint(25, 45), 'Ilha 4') data.addToBuffer('basicdemo/pie2', random.randint(25, 45), 'Ilha 4') data.addToBuffer('basicdemo/pie2', random.randint(25, 45), 'Ilha 4')

Generate Data Sample for one bar graphic with 10 columns

for step in range(10): data.addToBuffer('basicdemo/bar10Columns', random.randint(50, 150), step)

Generate Data Sample for one bar graphic with 50 columns

for step in range(50): data.addToBuffer('basicdemo/bar50Columns', random.randint(50, 150), step)

Generate Data Sample for line

for step in range(250): data.addToBuffer('basicdemo/scaleline250points', random.randint(50, 150), step)

for step in range(500): data.addToBuffer('basicdemo/scaleline500points', random.randint(50, 150), step)

data.commit()

Generate data for one timeseries datatag. This data we can not deleted what was added before

If the tag do not exist, the code create this tag inside our system.

stag1 = aindapy.SensorTag(auth=auth, dataSource=dataSource, channel='1', datatag='XRND1', tag='Random Value 1', tag_unit='KG', tag_updaterate=1000) stag2 = aindapy.SensorTag(auth=auth, dataSource=dataSource, channel='1', datatag='XRND2', tag='Random Value 2', tag_unit='KG', tag_updaterate=1000)

tdata = aindapy.DataTimeSeries(auth=auth, dataSource=dataSource, bufferSize=1000) for step in range(10000): tdata.addToBuffer(sensorTag=stag1, timeStamp=datetime.datetime.now(), value=random.randint(45,90))

# if you do not pass timestamp, we will generate internaly
tdata.addToBuffer(sensorTag=stag2, value=random.randint(45,90))

tdata.commit()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

aindapy-0.0.14-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file aindapy-0.0.14-py3-none-any.whl.

File metadata

  • Download URL: aindapy-0.0.14-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.5

File hashes

Hashes for aindapy-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 b502296942f86ac8915130c0d04409fd4dd00e6b3cd76e33df52c753fa4c528a
MD5 1b0a84527a12a166e3c028a61ca11f20
BLAKE2b-256 3e9fb2c9820f0e28a20b955476d3ab3686bad3220fd14698b3502cf1f2c8c478

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page