Skip to main content

No project description provided

Project description

https://travis-ci.org/argaen/aiocache.svg?branch=master https://codecov.io/gh/argaen/aiocache/branch/master/graph/badge.svg https://badge.fury.io/py/aiocache.svg

An asynchronous cache implementation with multiple backends for asyncio. Used django-redis-cache and redis-simple-cache as inspiration for the initial structure.

Current implementations are:

The .get and .set functions provided by any of the implementations work with simple Redis GET/SET commands. This package is not meant for fine grained control over the objects you store in the cache (like updating/incrementing specific fields from your object). On the other hand, you are able to store any type of object and retrieve it back as it is.

Features

  • SimpleMemoryCache: A simple cache implementation in memory. Note that functions are async there to keep compatibility with other backend implementations.

  • RedisCache: Cache implementation using aioredis.

  • MemCache: Cache implementation using aiomcache. IN PROGRESS

  • cached decorator for async functions. IN PROGRESS

Usage

First, you need to install the package with pip install aiocache. Once installed, you can try the following:

import asyncio

from aiocache import RedisCache


async def main():
    cache = RedisCache(endpoint="127.0.0.1", port=6379, namespace="main")
    await cache.set("key", "value")
    await cache.set("expire_me", "value", timeout=10)  # Key will expire after 10 secs
    print(await cache.get("key"))
    print(await cache.get("expire_me"))
    print(await cache.ttl("expire_me"))


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

In some cases, you may want to cache complex objects and depending on the backend, you may need to transform the data before doing that. aiocache provides a couple of serializers you can use:

import asyncio

from collections import namedtuple
from aiocache import RedisCache
from aiocache.serializers import PickleSerializer


MyObject = namedtuple("MyObject", ["x", "y"])


async def main():
    cache = RedisCache(serializer=PickleSerializer(), namespace="default")
    await cache.set("key", MyObject(x=1, y=2))  # This will serialize to pickle and store in redis with bytes format
    my_object = await cache.get("key")  # This will retrieve the object and deserialize back to MyObject
    print("MyObject x={}, y={}".format(my_object.x, my_object.y))


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

In other cases, your serialization logic will be more advanced and you won’t have enough with the default ones. No worries, you can still pass a serializer to the constructor and also to the get/set calls. The serializer must contain the .serialize and .deserialize functions in case of using the constructor:

import asyncio

from aiocache import RedisCache


class MySerializer:
    def serialize(self, value):
        return 1

    def deserialize(self, value):
        return 2


async def main():
    cache = RedisCache(serializer=MySerializer(), namespace="main")
    await cache.set("key", "value")  # Will use MySerializer.serialize method
    print(await cache.get("key"))  # Will use MySerializer.deserialize method


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

Note that the method serialize must return data types supported by Redis get operation. You can also override when using the get and set methods:

import asyncio

from marshmallow import Schema, fields
from aiocache import RedisCache


class MyType:
    def __init__(self, x, y):
        self.x = x
        self.y = y


class MyTypeSchema(Schema):
    x = fields.Number()
    y = fields.Number()


def serialize(value):
    # Current implementation can't deal directly with dicts so we must cast to string
    return str(MyTypeSchema().dump(value).data)


def deserialize(value):
    return dict(MyTypeSchema().load(value).data)


async def main():
    cache = RedisCache(namespace="main")
    await cache.set("key", MyType(1, 2), serialize_fn=serialize)
    print(await cache.get("key", deserialize_fn=deserialize))


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiocache-0.0.1.tar.gz (3.1 kB view details)

Uploaded Source

File details

Details for the file aiocache-0.0.1.tar.gz.

File metadata

  • Download URL: aiocache-0.0.1.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for aiocache-0.0.1.tar.gz
Algorithm Hash digest
SHA256 c04399351514d4aa4c5b3e68daeb0f18f216c09f95d89aacb620de705bb82757
MD5 0cd93c76998ca7d1f2114dfb4fd138fd
BLAKE2b-256 06ed92678fbcd0374159fcfbcf36a2a0e5a0ed8d364540b9b091929299180d59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page