Skip to main content

Asynchronous cogeotiff reader

Project description

aiocogeo CircleCI

Usage

COGs are opened using the COGReader asynchronous context manager:

from async_cog_reader import COGReader

async with COGReader("http://cog.tif") as cog:
    ...

Several filesystems are supported:

  • HTTP/HTTPS (http://, https://)
  • S3 (s3://)
  • File (/)

Metadata

Generating a rasterio-style profile for the COG:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
    print(cog.profile)

>>> {'driver': 'GTiff', 'width': 10280, 'height': 12190, 'count': 3, 'dtype': 'uint8', 'transform': Affine(0.6, 0.0, 367188.0,
       0.0, -0.6, 3777102.0), 'blockxsize': 512, 'blockysize': 512, 'compress': 'lzw', 'interleave': 'pixel', 'crs': 'EPSG:26911', 'tiled': True, 'photometric': 'rgb'}

Lower Level Metadata

A COG is composed of several IFDs, each with many TIFF tags:

from async_cog_reader.ifd import IFD
from async_cog_reader.tag import Tag

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
    for ifd in cog:
        assert isinstance(ifd, IFD)
        for tag in ifd:
            assert isinstance(tag, Tag)

Each IFD contains more granular metadata about the image than what is included in the profile. For example, finding the tilesize for each IFD:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
    for ifd in cog:
        print(ifd.TileWidth.value, ifd.TileHeight.value)

>>> 512 512
    128 128
    128 128
    128 128
    128 128
    128 128

More advanced use cases may need access to tag-level metadata:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
    first_ifd = cog.ifds[0]
    assert first_ifd.tag_count == 24

    for tag in first_ifd:
        print(tag)

>>> Tag(code=258, name='BitsPerSample', tag_type=TagType(format='H', size=2), count=3, length=6, value=(8, 8, 8))
    Tag(code=259, name='Compression', tag_type=TagType(format='H', size=2), count=1, length=2, value=5)
    Tag(code=257, name='ImageHeight', tag_type=TagType(format='H', size=2), count=1, length=2, value=12190)
    Tag(code=256, name='ImageWidth', tag_type=TagType(format='H', size=2), count=1, length=2, value=10280)
    ...

Image Data

The reader also has methods for reading internal image tiles and performing partial reads. Currently only jpeg, lzw, and webp compressions are supported.

Image Tiles

Reading the top left tile of an image at native resolution:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/webp_cog.tif") as cog:
    x = y = z = 0
    tile = await cog.get_tile(x, y, z)

    ifd = cog.ifds[z]
    assert tile.shape == (ifd.bands, ifd.TileHeight.value, ifd.TileWidth.value)

Partial Read

You can read a portion of the image by specifying a bounding box in the native crs of the image and an output shape:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/webp_cog.tif") as cog:
    assert cog.epsg == 26911
    partial_data = await cog.read(bounds=(368461,3770591,368796,3770921), shape=(512,512))

Internal Masks

If the COG has an internal mask, the returned array will be a masked array:

import numpy as np

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/naip_image_masked.tif") as cog:
    assert cog.is_masked

    tile = await cog.get_tile(0,0,0)
    assert np.ma.is_masked(tile)

CLI

$ aiocogeo --help
Usage: aiocogeo [OPTIONS] COMMAND [ARGS]...

Options:
  --install-completion [bash|zsh|fish|powershell|pwsh]
                                  Install completion for the specified shell.
  --show-completion [bash|zsh|fish|powershell|pwsh]
                                  Show completion for the specified shell, to
                                  copy it or customize the installation.

  --help                          Show this message and exit.

Commands:
  create-tms  Create OGC TileMatrixSet.
  info        Read COG metadata.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiocogeo-0.0.2.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

aiocogeo-0.0.2-py3-none-any.whl (15.9 kB view details)

Uploaded Python 3

File details

Details for the file aiocogeo-0.0.2.tar.gz.

File metadata

  • Download URL: aiocogeo-0.0.2.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for aiocogeo-0.0.2.tar.gz
Algorithm Hash digest
SHA256 184c361f36e59f2e98cd2d417acafc46bf861fd313b63b435a751c485981ccca
MD5 f8fe3aaa6e5ca24acbdaaf32ac939123
BLAKE2b-256 ea7bf709176e0bc7592f984f928ed43c0b497576b4026650a10d6620e919e588

See more details on using hashes here.

Provenance

File details

Details for the file aiocogeo-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: aiocogeo-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 15.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for aiocogeo-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 59a6faa605d03d57b28bf6c63f67dd7d1a0af5dd83a48929907d10234744312c
MD5 cbf12bbe4cfb146d194f80be3c28984f
BLAKE2b-256 c2601ab499402ad095b2f9f0e6e1edaa891d61d44e339f95b0b8d58c3491a78d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page