Skip to main content

Asynchronous cogeotiff reader

Project description

aiocogeo CircleCIcodecov

Usage

COGs are opened using the COGReader asynchronous context manager:

from aiocogeo import COGReader

async with COGReader("http://cog.tif") as cog:
    ...

Several filesystems are supported:

  • HTTP/HTTPS (http://, https://)
  • S3 (s3://)
  • File (/)

Metadata

Generating a rasterio-style profile for the COG:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
    print(cog.profile)

>>> {'driver': 'GTiff', 'width': 10280, 'height': 12190, 'count': 3, 'dtype': 'uint8', 'transform': Affine(0.6, 0.0, 367188.0,
       0.0, -0.6, 3777102.0), 'blockxsize': 512, 'blockysize': 512, 'compress': 'lzw', 'interleave': 'pixel', 'crs': 'EPSG:26911', 'tiled': True, 'photometric': 'rgb'}

Lower Level Metadata

A COG is composed of several IFDs, each with many TIFF tags:

from aiocogeo.ifd import IFD
from aiocogeo.tag import Tag

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
    for ifd in cog:
        assert isinstance(ifd, IFD)
        for tag in ifd:
            assert isinstance(tag, Tag)

Each IFD contains more granular metadata about the image than what is included in the profile. For example, finding the tilesize for each IFD:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
    for ifd in cog:
        print(ifd.TileWidth.value, ifd.TileHeight.value)

>>> 512 512
    128 128
    128 128
    128 128
    128 128
    128 128

More advanced use cases may need access to tag-level metadata:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
    first_ifd = cog.ifds[0]
    assert first_ifd.tag_count == 24

    for tag in first_ifd:
        print(tag)

>>> Tag(code=258, name='BitsPerSample', tag_type=TagType(format='H', size=2), count=3, length=6, value=(8, 8, 8))
    Tag(code=259, name='Compression', tag_type=TagType(format='H', size=2), count=1, length=2, value=5)
    Tag(code=257, name='ImageHeight', tag_type=TagType(format='H', size=2), count=1, length=2, value=12190)
    Tag(code=256, name='ImageWidth', tag_type=TagType(format='H', size=2), count=1, length=2, value=10280)
    ...

Image Data

The reader also has methods for reading internal image tiles and performing partial reads. Currently only jpeg, lzw, and webp compressions are supported.

Image Tiles

Reading the top left tile of an image at native resolution:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/webp_cog.tif") as cog:
    x = y = z = 0
    tile = await cog.get_tile(x, y, z)

    ifd = cog.ifds[z]
    assert tile.shape == (ifd.bands, ifd.TileHeight.value, ifd.TileWidth.value)

Partial Read

You can read a portion of the image by specifying a bounding box in the native crs of the image and an output shape:

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/webp_cog.tif") as cog:
    assert cog.epsg == 26911
    partial_data = await cog.read(bounds=(368461,3770591,368796,3770921), shape=(512,512))

Internal Masks

If the COG has an internal mask, the returned array will be a masked array:

import numpy as np

async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/naip_image_masked.tif") as cog:
    assert cog.is_masked

    tile = await cog.get_tile(0,0,0)
    assert np.ma.is_masked(tile)

Configuration

Configuration options are exposed through environment variables:

  • INGESTED_BYTES_AT_OPEN - defines the number of bytes in the first GET request at file opening (defaults to 16KB)
  • ENABLE_BLOCK_CACHE - determines if internal blocks are cached in memory (defaults to TRUE)
  • HTTP_MERGE_CONSECUTIVE_RANGES - determines if consecutive ranges are merged into a single request (defaults to FALSE)
  • LOG_LEVEL - determines the log level used by the package (defaults to ERROR)
  • VERBOSE_LOGS - enables verbose logging, designed for use when LOG_LEVEL=DEBUG (defaults to FALSE)

Refer to aiocogeo/config.py for more details about configuration options.

CLI

$ aiocogeo --help
Usage: aiocogeo [OPTIONS] COMMAND [ARGS]...

Options:
  --install-completion [bash|zsh|fish|powershell|pwsh]
                                  Install completion for the specified shell.
  --show-completion [bash|zsh|fish|powershell|pwsh]
                                  Show completion for the specified shell, to
                                  copy it or customize the installation.

  --help                          Show this message and exit.

Commands:
  create-tms  Create OGC TileMatrixSet.
  info        Read COG metadata.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiocogeo-0.0.3.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

aiocogeo-0.0.3-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file aiocogeo-0.0.3.tar.gz.

File metadata

  • Download URL: aiocogeo-0.0.3.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for aiocogeo-0.0.3.tar.gz
Algorithm Hash digest
SHA256 afb63c9d25d712a71c1bbea72047499dbf2ce3e7e61fec2bc67f9090ad9d9b12
MD5 227289b8d8939e9fcce2e6f4f7ef9092
BLAKE2b-256 e9c518ba200a16aef671b55039a415e474e03dc784815ab38289c4fdcd1c0858

See more details on using hashes here.

Provenance

File details

Details for the file aiocogeo-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: aiocogeo-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for aiocogeo-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c457fa1e4d54676606c6fa1a99d8a96741f88cd1822c4f17607ec62704d39dd3
MD5 564a00ff31473a54f546e38b800fc8db
BLAKE2b-256 29f7a0dae21f60ebf0eb5b66f0983194ec259c4094f8c3cb9f5f3dc645de23e5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page