Skip to main content

aiomisc - miscellaneous utils for asyncio

Project description

Coveralls Travis CI Latest Version https://img.shields.io/pypi/wheel/aiomisc.svg https://img.shields.io/pypi/pyversions/aiomisc.svg https://img.shields.io/pypi/l/aiomisc.svg

Miscellaneous utils for asyncio.

Installation

Installing from pypi:

pip3 install aiomisc

Installing from github.com:

pip3 install git+https://github.com/mosquito/aiomisc.git

Quick Start

Async entrypoint with logging and useful arguments.

import argparse
import asyncio
import os
import logging

from aiomisc.entrypoint import entrypoint, LogFormat


parser = argparse.ArgumentParser()

parser.add_argument(
    "-L", "--log-level", help="Log level",
    default=os.getenv('LOG_LEVEL', 'info'),
    choices=(
        'critical', 'fatal', 'error', 'warning',
        'warn', 'info', 'debug', 'notset'
    ),
)

parser.add_argument(
    "--log-format", help="Log format",
    default=os.getenv('LOG_FORMAT', 'color'),
    choices=LogFormat.choices(),
    metavar='LOG_FORMAT',
)

parser.add_argument(
    "-D", "--debug", action='store_true',
    help="Run loop and application in debug mode"
)


parser.add_argument(
    "--pool-size", help="Thread pool size",
    default=os.getenv('THREAD_POOL'), type=int,
)


log = logging.getLogger(__name__)


async def main():
    log.info('Starting')
    await asyncio.sleep(3)
    log.info('Exiting')


if __name__ == '__main__':
    arg = parser.parse_args()

    with entrypoint(log_level=arg.log_level,
                    log_format=arg.log_format) as loop:
        loop.run_until_complete(main())

Install event loop on the program starts.

import asyncio
from aiomisc.utils import new_event_loop


# Installing uvloop event loop
# and set `aiomisc.thread_pool.ThreadPoolExecutor`
# as default executor
new_event_loop()


async def main():
    await asyncio.sleep(3)


if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

Close current event loop and install the new one:

import asyncio
from aiomisc.utils import new_event_loop


async def main():
    await asyncio.sleep(3)


if __name__ == '__main__':
    loop = new_event_loop()
    loop.run_until_complete(main())

Overview:

entrypoint

In generic case the entrypoint helper creates event loop and cancelling already running coroutines when exit.

import asyncio
from aiomisc.entrypoint import entrypoint

async def main():
    await asyncio.sleep(1)

with entrypoint() as loop:
    loop.run_until_complete(main())

You might pass service instances to the entrypoint for running them, after exit service instances will be graceful shutting down.

import asyncio
from aiomisc.entrypoint import entrypoint
from aiomisc.service import Service, TCPServer, UDPServer


class LoggingService(Service):
    async def start(self):
        while True:
            print('Hello from service', self.name)
            await asyncio.sleep(1)


class EchoServer(TCPServer):
    async def handle_client(self, reader: asyncio.StreamReader,
                            writer: asyncio.StreamWriter):
        while True:
            writer.write(await reader.readline())


class UDPPrinter(UDPServer):
    async def handle_datagram(self, data: bytes, addr):
        print(addr, '->', data)


services = (
    LoggingService(name='#1'),
    EchoServer(address='::1', port=8901),
    UDPPrinter(address='::1', port=3000),
)


with entrypoint(*services) as loop:
    loop.run_forever()

Async Backoff

Decorator that ensures that the decorated function will be successfully completed in waterline time at best case, or will be retried until deadline time expires.

from aiomisc.backoff import asyncbackoff

waterline = 0.1
deadline = 1
pause = 0.1

@asyncbackoff(waterline, deadline, pause)
async def db_fetch():
    ...


@asyncbackoff(0.1, 1, 0.1)
async def db_save(data: dict):
    ...

Service for aiohttp

Installed aiohttp required.

import aiohttp.web
from aiomisc.entrypoint import entrypoint
from aiomisc.service.aiohttp import AIOHTTPService


async def handle(request):
    name = request.match_info.get('name', "Anonymous")
    text = "Hello, " + name
    return aiohttp.web.Response(text=text)


class REST(AIOHTTPService):
    async def create_application(self):
        app = aiohttp.web.Application()

        app.add_routes([
            aiohttp.web.get('/', handle),
            aiohttp.web.get('/{name}', handle)
        ])

        return app


service = REST(address='127.0.0.1', port=8080)


with entrypoint(service) as loop:
    loop.run_forever()

Threaded decorator

Wraps blocking function and run it in the thread pool.

import asyncio
import time
from aiomisc.utils import new_event_loop
from aiomisc.thread_pool import threaded


@threaded
def blocking_function():
    time.sleep(1)


async def main():
    # Running in parallel
    await asyncio.gather(
        blocking_function(),
        blocking_function(),
    )


if __name__ == '__main__':
    loop = new_event_loop()
    loop.run_until_complete(main())

Fast ThreadPoolExecutor

This is a simple thread pool implementation.

Installation as a default thread pool:

import asyncio
from aiomisc.thread_pool import ThreadPoolExecutor

loop = asyncio.get_event_loop()
thread_pool = ThreadPoolExecutor(4, loop=loop)
loop.set_default_executor(thread_pool)

Bind socket

from aiomisc.utils import bind_socket

# IPv4 socket
sock = bind_socket(address="127.0.0.1", port=1234)

# IPv6 socket (on Linux IPv4 socket will be bind too)
sock = bind_socket(address="::1", port=1234)

Periodic callback

Runs coroutine function periodically

import asyncio
import time
from aiomisc.utils import new_event_loop
from aiomisc.periodic import PeriodicCallback


async def periodic_function():
    print("Hello")


if __name__ == '__main__':
    loop = new_event_loop()

    periodic = PeriodicCallback(periodic_function)

    # Call it each second
    periodic.start(1)

    loop.run_forever()

Logging configuration

Setting up colorized logs:

import logging
from aiomisc.log import basic_config


# Configure logging
basic_config(level=logging.INFO, buffered=False, log_format='color')

Setting up json logs:

import logging
from aiomisc.log import basic_config


# Configure logging
basic_config(level=logging.INFO, buffered=False, log_format='json')

Buffered log handler

Parameter buffered=True enables memory buffer that flushes logs into a thread.

import logging
from aiomisc.log import basic_config
from aiomisc.periodic import PeriodicCallback
from aiomisc.utils import new_event_loop


# Configure logging globally
basic_config(level=logging.INFO, buffered=False, log_format='json')

async def write_log(loop):
    logging.info("Hello %f", loop.time())

if __name__ == '__main__':
    loop = new_event_loop()

    # Configure
    basic_config(
        level=logging.INFO,
        buffered=True,
        log_format='color',
        flush_interval=2
    )

    periodic = PeriodicCallback(write_log, loop)
    periodic.start(0.3)

    loop.run_forever()

Useful services

Memory Tracer

Simple and useful service for logging largest python objects allocated in memory.

import asyncio
import os
from aiomisc.entrypoint import entrypoint
from aiomisc.service import MemoryTracer


async def main():
    leaking = []

    while True:
        leaking.append(os.urandom(128))
        await asyncio.sleep(0)


with entrypoint(MemoryTracer(interval=1, top_results=5)) as loop:
    loop.run_until_complete(main())

This example will log something like this each second.

[T:[1] Thread Pool] INFO:aiomisc.service.tracer: Top memory usage:
 Objects | Obj.Diff |   Memory | Mem.Diff | Traceback
      12 |       12 |   1.9KiB |   1.9KiB | aiomisc/periodic.py:40
      12 |       12 |   1.8KiB |   1.8KiB | aiomisc/entrypoint.py:93
       6 |        6 |   1.1KiB |   1.1KiB | aiomisc/thread_pool.py:71
       2 |        2 |   976.0B |   976.0B | aiomisc/thread_pool.py:44
       5 |        5 |   712.0B |   712.0B | aiomisc/thread_pool.py:52

[T:[6] Thread Pool] INFO:aiomisc.service.tracer: Top memory usage:
 Objects | Obj.Diff |   Memory | Mem.Diff | Traceback
   43999 |    43999 |   7.1MiB |   7.1MiB | scratches/scratch_8.py:11
      47 |       47 |   4.7KiB |   4.7KiB | env/bin/../lib/python3.7/abc.py:143
      33 |       33 |   2.8KiB |   2.8KiB | 3.7/lib/python3.7/tracemalloc.py:113
      44 |       44 |   2.4KiB |   2.4KiB | 3.7/lib/python3.7/tracemalloc.py:185
      14 |       14 |   2.4KiB |   2.4KiB | aiomisc/periodic.py:40

Versioning

This software follows Semantic Versioning

How to develop?

Should be installed:

  • virtualenv

  • GNU Make as make

  • Python 3.5+ as python3

For setting up developer environment just type:

make develop

Project details


Release history Release notifications | RSS feed

This version

1.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiomisc-1.1.0.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

aiomisc-1.1.0-py3-none-any.whl (23.5 kB view details)

Uploaded Python 3

File details

Details for the file aiomisc-1.1.0.tar.gz.

File metadata

  • Download URL: aiomisc-1.1.0.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/33.1.1 requests-toolbelt/0.8.0 tqdm/4.20.0 CPython/3.6.5

File hashes

Hashes for aiomisc-1.1.0.tar.gz
Algorithm Hash digest
SHA256 62f789f26d34015343bb9bca25d2c54cbf6634d6ff3a9bceffa26e798999531d
MD5 60e1ba29a1b9fc996a477624c12b823b
BLAKE2b-256 a4371a2c8dde047ae977f6fb05cc09817897173a9f966cfdadf140a2814e45f0

See more details on using hashes here.

File details

Details for the file aiomisc-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: aiomisc-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/33.1.1 requests-toolbelt/0.8.0 tqdm/4.20.0 CPython/3.6.5

File hashes

Hashes for aiomisc-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d3fe670e1d1ac31fff7fa1e5e9892265e8e837b7e6a92b6dd830359a7d86014d
MD5 28cae960dbbbab4ff3d73c1351b2073d
BLAKE2b-256 01c31b4563faf509f069bc6db73e233d11109f79dd775d10001ad7d9145afad7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page