Skip to main content

A common data access layer for AI-driven drug discovery.

Project description

📊 AionData

AionData is a common data access layer designed for AI-driven drug discovery software. It provides a unified interface to access diverse biochemical databases.

Installation

To install AionData, ensure you have Python 3.10 or newer installed on your system. You can install AionData via pip:

pip install aiondata

Datasets

AionData provides access to the following datasets:

  • BindingDB: A public, web-accessible database of measured binding affinities, focusing chiefly on the interactions of proteins considered to be drug-targets with small, drug-like molecules.

  • MoleculeNet: An extensive collection of datasets curated to support and benchmark the development of machine learning models in the realm of drug discovery and chemical informatics. Covers a broad spectrum of molecular data including quantum mechanical properties, physical chemistry, biophysics, and physiological effects.

    • Tox21: Features qualitative toxicity measurements for 12,000 compounds across 12 targets, used for toxicity prediction.
    • ESOL: Contains water solubility data for 1,128 compounds, aiding in solubility prediction models.
    • FreeSolv: Provides experimental and calculated hydration free energy for small molecules, crucial for understanding solvation.
    • Lipophilicity: Includes experimental measurements of octanol/water distribution coefficients (logD) for 4,200 compounds.
    • QM7: A dataset of 7,165 molecules with quantum mechanical properties computed using density functional theory (DFT).
    • QM8: Features electronic spectra and excited state energies of over 20,000 small molecules computed with TD-DFT.
    • QM9: Offers geometric, energetic, electronic, and thermodynamic properties of ~134k molecules computed with DFT.
    • MUV: Datasets designed for the validation of virtual screening techniques, with about 93,000 compounds.
    • HIV: Contains data on the ability of compounds to inhibit HIV replication, for binary classification tasks.
    • BACE: Includes quantitative binding results for inhibitors of human beta-secretase 1, with both classification and regression tasks.
    • BBBP: Features compounds with information on permeability properties across the Blood-Brain Barrier.
    • SIDER: Contains information on marketed medicines and their recorded adverse drug reactions, for side effects prediction.
    • ClinTox: Compares drugs approved by the FDA and those that failed clinical trials for toxicity reasons, for binary classification and toxicity prediction.

License

AionData is licensed under the Apache License. See the LICENSE file for more details.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiondata-0.1.2.tar.gz (9.0 kB view hashes)

Uploaded Source

Built Distribution

aiondata-0.1.2-py3-none-any.whl (10.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page