Skip to main content

Aioprometheus summary with quantiles over configurable sliding time window

Project description

aioprometheus-summary

Aioprometheus summary with quantiles over configurable sliding time window

Installation

pip install aioprometheus-summary==0.1.0

This package can be found on PyPI.

Collecting

Basic usage

from aioprometheus_summary import Summary

s = Summary("request_latency_seconds", "Description of summary")
s.observe({}, 4.7)

With labels

from aioprometheus_summary import Summary

s = Summary("request_latency_seconds", "Description of summary")
s.observe({"method": "GET", "endpoint": "/profile"}, 1.2)
s.observe({"method": "POST", "endpoint": "/login"}, 3.4)

With custom quantiles and precisions

By default, metrics are observed for next quantile-precision pairs ((0.50, 0.05), (0.90, 0.01), (0.99, 0.001)) but you can provide your own value when creating the metric.

from aioprometheus_summary import Summary

s = Summary(
    "request_latency_seconds", "Description of summary",
    invariants=((0.50, 0.05), (0.75, 0.02), (0.90, 0.01), (0.95, 0.005), (0.99, 0.001)),
)
s.observe({}, 4.7)

With custom time window settings

Typically, you don't want to have a Summary representing the entire runtime of the application, but you want to look at a reasonable time interval. Summary metrics implement a configurable sliding time window.

The default is a time window of 10 minutes and 5 age buckets, i.e. the time window is 10 minutes wide, and we slide it forward every 2 minutes, but you can configure this values for your own purposes.

from aioprometheus_summary import Summary

s = Summary(
    "request_latency_seconds", "Description of summary",
    # time window 5 minutes wide with 10 age buckets (sliding every 30 seconds)
    max_age_seconds=5 * 60,
    age_buckets=10,
)
s.observe({}, 4.7)

Querying

Suppose we have a metric:

from aioprometheus_summary import Summary

s = Summary("request_latency_seconds", "Description of summary")

To show request latency by method, endpoint and quntile use next query:

max by (method, endpoint, quantile) (request_latency_seconds)

To only 99-th quantile:

max by (method, endpoint) (request_latency_seconds{quantile="0.99")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aioprometheus-summary-0.1.0.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

aioprometheus_summary-0.1.0-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file aioprometheus-summary-0.1.0.tar.gz.

File metadata

  • Download URL: aioprometheus-summary-0.1.0.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for aioprometheus-summary-0.1.0.tar.gz
Algorithm Hash digest
SHA256 575cf926ba01dd3e20608edb0ed38cbf5ea0f471639ae6fa43002e8b527e762a
MD5 71df3c96916f426af1289ef176734cc5
BLAKE2b-256 57da1f1ca9808ee65efe65a4d8d2f20f5b58fcdfaf1910a6e4d2e4fc517fe533

See more details on using hashes here.

File details

Details for the file aioprometheus_summary-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for aioprometheus_summary-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d85478817f27c020d238436713b5607bedaf8fe843611184dd33b158ceb25c68
MD5 e91317f56c19b5b14b7623f63e0bf2de
BLAKE2b-256 396bd1e032aeddeb5b395fa4ae102712cae3066a0542656839f9ba00f4b9083e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page