Skip to main content

airflow-clickhouse-plugin - Airflow plugin to execute ClickHouse commands and queries

Project description

Airflow ClickHouse Plugin

Provides ClickHouseHook and ClickHouseOperator for Apache Airflow based on mymarilyn/clickhouse-driver.

Features

  1. SQL queries are templated.
  2. Can run multiple SQL queries per single ClickHouseOperator.
  3. Result of the last query of ClickHouseOperator instance is pushed to XCom.
  4. Executed queries are logged in a pretty form.
  5. Uses effective native ClickHouse TCP protocol thanks to clickhouse-driver. Does not support HTTP protocol.

Installation

pip install -U airflow-clickhouse-plugin

Usage

See examples below.

ClickHouseOperator Reference

To import ClickHouseOperator use: from airflow.operators.clickhouse_operator import ClickHouseOperator

Supported kwargs:

  • sql: templated query (if argument is a single str) or queries (if iterable of str's).
  • clickhouse_conn_id: connection id. Connection schema (all properties are optional, defaults correspond to the default ClickHouse configuration):
    • host, default: localhost;
    • port, default: 9000 (default native ClickHouse protocol port);
    • database, default: default;
    • user, default: default;
    • password, default: '' (empty).
  • parameters: passed to clickhouse-driver execute method.
    • If multiple queries are provided via sql then the parameters are passed to all of them.
    • Parameters are not templated.
  • database: if present, overrides database defined by connection.
  • Other kwargs (including the required task_id) are inherited from Airflow BaseOperator.

The result of the last query is pushed to XCom.

ClickHouseHook Reference

To import ClickHouseHook use: from airflow.hooks.clickhouse_hook import ClickHouseHook

Supported kwargs of constructor (__init__ method):

  • clickhouse_conn_id: connection id. See connection schema above.
  • database: if present, overrides database defined by connection.

Supports all of the methods of the Airflow BaseHook including:

  • get_records(sql: str, parameters: dict=None): returns result of the query as a list of tuples. Materializes all the records in memory.
  • get_first(sql: str, parameters: dict=None): returns the first row of the result. Does not load the whole dataset into memory because of using execute_iter.
  • run(sql, parameters): runs a single query (specified argument of type str) or multiple queries (if iterable of str). parameters can have any form supported by execute method of clickhouse-driver.
    • If single query is run then returns its result. If multiple queries are run then returns the result of the last of them.
    • If multiple queries are given then parameters are passed to all of them.
    • Materializes all the records in memory (uses simple execute but not execute_iter).
      • To achieve results streaming by execute_iter use it directly via hook.get_conn().execute_iter(…) (see execute_iter reference).
    • Every run call uses a new connection which is closed when finished.
  • get_conn(): returns the underlying clickhouse_driver.Client instance.
  • get_pandas_df is not implemented.

Examples

ClickHouseOperator

from airflow import DAG
from airflow.operators.clickhouse_plugin import ClickHouseOperator
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago

with DAG(
        dag_id='update_income_aggregate',
        start_date=days_ago(2),
) as dag:
    ClickHouseOperator(
        task_id='update_income_aggregate',
        database='default',
        sql=(
            "INSERT INTO aggregate "
                "SELECT eventDt, sum(price * qty) AS income FROM sales "
                "WHERE eventDt = '{{ ds }}' GROUP BY eventDt",
            "OPTIMIZE TABLE aggregate ON CLUSTER {{ var.value.cluster_name }} "
                "PARTITION toDate('{{ execution_date.format('%Y-%m-01') }}')",
            "SELECT sum(income) FROM aggregate "
                "WHERE eventDt BETWEEN "
                "'{{ execution_date.start_of('month').to_date_string() }}'"
                "AND '{{ execution_date.end_of('month').to_date_string() }}'",
            # result of the last query is pushed to XCom
        ),
        clickhouse_conn_id='clickhouse_test',
    ) >> PythonOperator(
        task_id='print_month_income',
        provide_context=True,
        python_callable=lambda task_instance, **_:
            # pulling XCom value and printing it
            print(task_instance.xcom_pull(task_ids='update_income_aggregate')),
    )

ClickHouseHook

from airflow import DAG
from airflow.hooks.clickhouse_hook import ClickHouseHook
from airflow.hooks.mysql_hook import MySqlHook
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago


def mysql_to_clickhouse():
    mysql_hook = MySqlHook()
    ch_hook = ClickHouseHook()
    records = mysql_hook.get_records('SELECT * FROM some_mysql_table')
    ch_hook.run('INSERT INTO some_ch_table VALUES', records)


with DAG(
        dag_id='mysql_to_clickhouse',
        start_date=days_ago(2),
) as dag:
    dag >> PythonOperator(
        task_id='mysql_to_clickhouse',
        python_callable=mysql_to_clickhouse,
    )

Important note: don't try to insert values using ch_hook.run('INSERT INTO some_ch_table VALUES (1)') literal form. clickhouse-driver requires values for INSERT query to be provided via parameters due to specifics of the native ClickHouse protocol.

Default connection

By default the hook and operator use connection_id='clickhouse_default'.

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

airflow-clickhouse-plugin-0.5.1.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file airflow-clickhouse-plugin-0.5.1.tar.gz.

File metadata

  • Download URL: airflow-clickhouse-plugin-0.5.1.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for airflow-clickhouse-plugin-0.5.1.tar.gz
Algorithm Hash digest
SHA256 358a3241abeafd2bbf571769512a21d2fceccaf883cf56925f2f81982a63e523
MD5 1e1c7ff5d34aa1b2263463741157803e
BLAKE2b-256 c1ac5bfb4c485742925c0b059b69160fcd49e19e717babd578d55a85715c2404

See more details on using hashes here.

File details

Details for the file airflow_clickhouse_plugin-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: airflow_clickhouse_plugin-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 8.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for airflow_clickhouse_plugin-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 957018080ab8b9670f86108f416f090fc5b1eb046c7a065a171ed1e30bb7ccae
MD5 0df1dbb1bb52fd1a6c4ce844e7242f08
BLAKE2b-256 2d80e0beda560c6358fa3ee8d36efac748a0eefa3e66b44509db71cb451b8d2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page