Simplified Airflow CLI Tool for Lauching CeleryExecutor Deployment
Project description
Airflow Run
Python tool for deploying Airflow Multi-Node Cluster.
Requirements
Python >=3.6 (tested)
Goal
To provide a quick way to setup Airflow Multi-Node Cluster (a.k.a. Celery Executor Setup).
Steps
Generate config yaml file.
Run commands to start Rabbitmq, Postgresql and other Airflow services:
Generate config file:
afr --generate_config
Running the tool in the same directory as config file:
afr --run postgresql
afr --run initdb
afr --run rabbitmq
afr --run webserver
afr --run scheduler
afr --run worker --queue {queue name}
afr --run flower
Or, running the tool specifying config path:
afr --run postgresql --config /path/config.yaml
Default Config yaml file:
private_registry: False
registry_url: registry.hub.docker.com
username: ""
password: ""
repository: pkuong/airflow-run
image: airflow-run
tag: latest
local_dir: {local directory where you want to mount /dags and /logs folder}
webserver_port: 8000
flower_port: 5555
airflow_cfg:
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__CORE__LOAD_EXAMPLES: "False"
AIRFLOW__CORE__DAGS_FOLDER: /usr/local/airflow/airflow/dags
AIRFLOW__CORE__LOGS_FOLDER: /usr/local/airflow/airflow/logs
AIRFLOW_HOME: /usr/local/airflow
rabbitmq:
name: rabbitmq
username: {username}
password: {password}
host: {IP}
virtual_host: /
image: rabbitmq:3-management
home: /var/lib/rabbitmq
ui_port: 15672
port: 5672
env:
RABBITMQ_DEFAULT_USER: {username}
RABBITMQ_DEFAULT_PASS: {password}
postgresql:
name: postgresql
username: {username}
password: {password}
host: {host}
image: postgres
data: /var/lib/postgresql/data
port: 5432
env:
PGDATA: /var/lib/postgresql/data/pgdata
POSTGRES_USER: {username}
POSTGRES_PASSWORD: {password}
Docker image
This tool is using the following public docker image by default.
https://hub.docker.com/repository/docker/pkuong/airflow-run
Building the image:
If you want to build your own image, you can run the following:
afd --build --config_path={absolute path to config.yaml} --dockerfile_path={absolute path to directory which contains Dockerfile}
Contributors
Paulo Kuong (@pkuong)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
airflow-run-0.0.7.tar.gz
(8.7 kB
view details)
Built Distribution
File details
Details for the file airflow-run-0.0.7.tar.gz
.
File metadata
- Download URL: airflow-run-0.0.7.tar.gz
- Upload date:
- Size: 8.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c25d263d512e1d0870a1c8d57e89bea2b91e10bea3c78167ce4b39c34514d18f |
|
MD5 | 2161ba454bd82f8ea67665f888d1fdd0 |
|
BLAKE2b-256 | c1944f07a1574d1256b0ebeaeaa2ac41d6b64c97ae0e0c254a3b35bdcbae4af3 |
Provenance
File details
Details for the file airflow_run-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: airflow_run-0.0.7-py3-none-any.whl
- Upload date:
- Size: 9.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ceada80e2abfc3c4832f51f82d1a6af55e17674e4a256e008892fb619785b5a2 |
|
MD5 | 9037e69242d2b0c342494f5412c7feac |
|
BLAKE2b-256 | 3e765f4f6b03da5da61f42018d912a3198b6fc571e41119ff4d2948c25e80b93 |