Skip to main content

Simplified Airflow CLI Tool for Lauching CeleryExecutor Deployment

Project description

Airflow Run

Python tool for deploying Airflow Multi-Node Cluster.

Requirements

  • Python >=3.6 (tested)

Goal

To provide a quick way to setup Airflow Multi-Node Cluster (a.k.a. Celery Executor Setup).

Steps

  1. Generate config yaml file.

  2. Run commands to start webserver, scheduler, worker, (rabbitmq, postgres).

  3. Add dag files and run initdb.

Generate config file:

afr --generate_config

Running the tool in the same directory as config file:

afr --run postgresql
afr --run initdb
afr --run rabbitmq
afr --run webserver
afr --run scheduler
afr --run worker --queue {queue name}
afr --run flower

Or, running the tool specifying config path:

afr --run postgresql --config /path/config.yaml

Or, use this environment variable to set the config path:

export AIRFLOWRUN_CONFIG_PATH="/some_path/config.yaml"

After running webserver, scheduler and worker (postgres and rabbitmq if needed local instances), Add your dag files in the dags subdirectory in the directory you defined in the config file. Then, run the following:

afr --run initdb

(* note: make sure you have the correct user permission in the dags, logs subdirectories.)

That is it!!

Default Config yaml file:

private_registry: False
registry_url: registry.hub.docker.com
username: ""
password: ""
repository: pkuong/airflow-run
image: airflow-run
tag: latest
local_dir: {local directory where you want to mount /dags and /logs folder}
webserver_port: 8000
flower_port: 5555
env:
  AIRFLOW__CORE__EXECUTOR: CeleryExecutor
  AIRFLOW__CORE__LOAD_EXAMPLES: "False"
  AIRFLOW__CORE__DAGS_FOLDER: /usr/local/airflow/airflow/dags
  AIRFLOW__CORE__LOGS_FOLDER: /usr/local/airflow/airflow/logs
  AIRFLOW_HOME: /usr/local/airflow
rabbitmq:
  name: rabbitmq
  username: {username}
  password: {password}
  host: {IP}
  virtual_host: /
  image: rabbitmq:3-management
  home: /var/lib/rabbitmq
  ui_port: 15672
  port: 5672
  env:
    RABBITMQ_DEFAULT_USER: {username}
    RABBITMQ_DEFAULT_PASS: {password}
postgresql:
  name: postgresql
  username: {username}
  password: {password}
  host: {host}
  image: postgres
  data: /var/lib/postgresql/data
  port: 5432
  env:
    PGDATA: /var/lib/postgresql/data/pgdata
    POSTGRES_USER: {username}
    POSTGRES_PASSWORD: {password}

Docker image

This tool is using the following public docker image by default.
https://hub.docker.com/repository/docker/pkuong/airflow-run

Building the image:

If you want to build your own image, you can run the following:
afd --build --config_path={absolute path to config.yaml} --dockerfile_path={absolute path to directory which contains Dockerfile}

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

airflow-run-0.1.7.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

airflow_run-0.1.7-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file airflow-run-0.1.7.tar.gz.

File metadata

  • Download URL: airflow-run-0.1.7.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.8

File hashes

Hashes for airflow-run-0.1.7.tar.gz
Algorithm Hash digest
SHA256 a8805c7c2a6c5fa689fa78ca77571bf4f9772d0e6323b0b3a3ef132ede884e7a
MD5 ee212b4cb9da6b2647ddcff8e6af366c
BLAKE2b-256 2630053c09da245b939063ed213cb56c4fe1b3a3fe0e42b4628103bb75c1acf7

See more details on using hashes here.

Provenance

File details

Details for the file airflow_run-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: airflow_run-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 10.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.8

File hashes

Hashes for airflow_run-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 d4c60982720fa4f8bcebc5cbd00e045b04910d1a57873f17a67b07a8912b0dac
MD5 ceb45b98ddb7dcdd8b1a64ad40f961ed
BLAKE2b-256 e18ad572ff22fb217886a79b243864859c1daa4d66001739f7c6e29ee0ff6835

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page