Skip to main content

No project description provided

Project description

Airflow Tools

Workflow

Collection of Operators, Hooks and utility functions aimed at facilitating ELT pipelines.

Data Lake Facade

The Data Lake Facade serves as an abstracion over different Hooks that can be used as a backend such as:

  • Azure Data Lake Storage (ADLS)
  • Simple Storage Service (S3)

Operators can create the correct hook at runtime by passing a connection ID with a connection type of aws or adls. Example code:

conn = BaseHook.get_connection(conn_id)
hook = conn.get_hook()

Operators

HTTP to Data Lake

Creates a Example usage:

HttpToDataLake(
    task_id='test_http_to_data_lake',
    http_conn_id='http_test',
    data_lake_conn_id='data_lake_test',
    data_lake_path=s3_bucket + '/source1/entity1/{{ ds }}/',
    endpoint='/api/users',
    method='GET',
    jmespath_expression='data[:2].{id: id, email: email}',
)

JMESPATH expressions

APIs often return the response we are interested in wrapped in a key. JMESPATH expressions are a query language that we can use to select the response we are interested in. You can find more information on JMESPATH expressions and test them here.

The above expression selects the first two objects inside the key data, and then only the id and email attributes in each object. An example response can be found here.

Tests

Integration tests

To guarantee that the library works as intended we have an integration test that attempts to install it in a fresh virtual environment, and we aim to have a test for each Operator.

Running integration tests locally

The lint-and-test.yml workflow sets up the necessary environment variables, but if you want to run them locally you will need the following environment variables:

AIRFLOW_CONN_DATA_LAKE_TEST='{"conn_type": "aws", "extra": {"endpoint_url": "http://localhost:9090"}}'
AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
AWS_DEFAULT_REGION=us-east-1
TEST_BUCKET=data_lake
S3_ENDPOINT_URL=http://localhost:9090

AIRFLOW_CONN_DATA_LAKE_TEST='{"conn_type": "aws", "extra": {"endpoint_url": "http://localhost:9090"}}' AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY TEST_BUCKET=data_lake S3_ENDPOINT_URL=http://localhost:9090 poetry run pytest tests/ --doctest-modules --junitxml=junit/test-results.xml --cov=com --cov-report=xml --cov-report=html
AIRFLOW_CONN_SFTP_TEST='{"conn_type": "sftp", "host": "localhost", "port": 22, "login": "test_user", "password": "pass"}'

And you also need to run Adobe's S3 mock container like this:

docker run --rm -p 9090:9090 -e initialBuckets=data_lake -e debug=true -t adobe/s3mock

and the SFTP container like this:

docker run -p 22:22 -d atmoz/sftp test_user:pass:::root_folder

Notifications

Slack (incoming webhook)

If your or your team are using slack, you can send and receive notifications about failed dags using dag_failure_slack_notification_webhook method (in notifications.slack.webhook). You need to create a new Slack App and enable the "Incoming Webhooks". More info about sending messages using Slack Incoming Webhooks here.

You need to create a new Airflow connection with the name SLACK_WEBHOOK_NOTIFICATION_CONN (or AIRFLOW_CONN_SLACK_WEBHOOK_NOTIFICATION_CONN if you are using environment variables.)

Default message will have the format below:

image

But you can custom this message providing the below parameters:

  • text (str)[optional]: the main message will appear in the notification. If you provide your slack block will be ignored.
  • blocks (dict)[optional]: you can provide your custom slack blocks for your message.
  • include_blocks (bool)[optional]: indicates if the default block have to be used. If you provide your own blocks will be ignored.
  • source (typing.Literal['DAG', 'TASK'])[optional]: source of the failure (dag or task). Default: DAG.
  • image_url: (str)[optional] image url for you notification (accessory). You can use AIRFLOW_TOOLS__SLACK_NOTIFICATION_IMG_URL instead.
Example of use in a Dag
from datetime import datetime, timedelta

from airflow import DAG

from airflow.operators.bash import BashOperator
from airflow_tools.notifications.slack.webhook import (
    dag_failure_slack_notification_webhook,    # <--- IMPORT
)

with DAG(
    "slack_notification_dkl",
    description="Slack notification on fail",
    schedule=timedelta(days=1),
    start_date=datetime(2021, 1, 1),
    catchup=False,
    tags=["example"],
    on_failure_callback=dag_failure_slack_notification_webhook(),  # <--- HERE
) as dag:

    t = BashOperator(
        task_id="failing_test",
        depends_on_past=False,
        bash_command="exit 1",
        retries=1,
    )


if __name__ == "__main__":
    dag.test()

You can used only in a task providing the parameter source='TASK':

    t = BashOperator(
        task_id="failing_test",
        depends_on_past=False,
        bash_command="exit 1",
        retries=1,
        on_failure_callback=dag_failure_slack_notification_webhook(source='TASK')
    )

You can add a custom message (ignoring the slack blocks for a formatted message):

with DAG(
    ...
    on_failure_callback=dag_failure_slack_notification_webhook(
        text='The task {{ ti.task_id }} failed',
        include_blocks=False
    ),
) as dag:

Or you can pass your own Slack blocks:

custom_slack_blocks = {
    "type": "section",
    "text": {
        "type": "mrkdwn",
        "text": "<https://api.slack.com/reference/block-kit/block|This is an example using custom Slack blocks>"
    }
}

with DAG(
    ...
    on_failure_callback=dag_failure_slack_notification_webhook(
        blocks=custom_slack_blocks
    ),
) as dag:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

airflow_tools-0.6.0.tar.gz (17.4 kB view details)

Uploaded Source

Built Distribution

airflow_tools-0.6.0-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file airflow_tools-0.6.0.tar.gz.

File metadata

  • Download URL: airflow_tools-0.6.0.tar.gz
  • Upload date:
  • Size: 17.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Darwin/22.5.0

File hashes

Hashes for airflow_tools-0.6.0.tar.gz
Algorithm Hash digest
SHA256 438bce39f49defcebc0df8923eba0a56b2dac7e95cafea0d8256a51909496992
MD5 bc305a81d735a4a1611bf1f5c79ce4a2
BLAKE2b-256 2f5a3e0007bdba6790b454f7f86b086f293c02c4a196373991cdcff1201a182a

See more details on using hashes here.

File details

Details for the file airflow_tools-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: airflow_tools-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Darwin/22.5.0

File hashes

Hashes for airflow_tools-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e97414458cfb0a7b6cd853dedac9b78e7cd98221191c9ef2c739f7b07d448012
MD5 9acba034ef41da09e5f7b37b604ae174
BLAKE2b-256 512bd996869b63f603cb9a11e557530b0bd3af952ae703df38cfa66d93cd2ac8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page