Skip to main content

No project description provided

Project description

Airflow Tools

Workflow

Collection of Operators, Hooks and utility functions aimed at facilitating ELT pipelines.

Data Lake Facade

The Data Lake Facade serves as an abstracion over different Hooks that can be used as a backend such as:

  • Azure Data Lake Storage (ADLS)
  • Simple Storage Service (S3)

Operators can create the correct hook at runtime by passing a connection ID with a connection type of aws or adls. Example code:

conn = BaseHook.get_connection(conn_id)
hook = conn.get_hook()

Operators

HTTP to Data Lake

Creates a Example usage:

HttpToDataLake(
    task_id='test_http_to_data_lake',
    http_conn_id='http_test',
    data_lake_conn_id='data_lake_test',
    data_lake_path=s3_bucket + '/source1/entity1/{{ ds }}/',
    endpoint='/api/users',
    method='GET',
    jmespath_expression='data[:2].{id: id, email: email}',
)

JMESPATH expressions

APIs often return the response we are interested in wrapped in a key. JMESPATH expressions are a query language that we can use to select the response we are interested in. You can find more information on JMESPATH expressions and test them here.

The above expression selects the first two objects inside the key data, and then only the id and email attributes in each object. An example response can be found here.

Tests

Integration tests

To guarantee that the library works as intended we have an integration test that attempts to install it in a fresh virtual environment, and we aim to have a test for each Operator.

Running integration tests locally

The lint-and-test.yml workflow sets up the necessary environment variables, but if you want to run them locally you will need the following environment variables:

AIRFLOW_CONN_DATA_LAKE_TEST='{"conn_type": "aws", "extra": {"endpoint_url": "http://localhost:9090"}}'
AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
AWS_DEFAULT_REGION=us-east-1
TEST_BUCKET=data_lake
S3_ENDPOINT_URL=http://localhost:9090

AIRFLOW_CONN_DATA_LAKE_TEST='{"conn_type": "aws", "extra": {"endpoint_url": "http://localhost:9090"}}' AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY TEST_BUCKET=data_lake S3_ENDPOINT_URL=http://localhost:9090 poetry run pytest tests/ --doctest-modules --junitxml=junit/test-results.xml --cov=com --cov-report=xml --cov-report=html
AIRFLOW_CONN_SFTP_TEST='{"conn_type": "sftp", "host": "localhost", "port": 22, "login": "test_user", "password": "pass"}'

And you also need to run Adobe's S3 mock container like this:

docker run --rm -p 9090:9090 -e initialBuckets=data_lake -e debug=true -t adobe/s3mock

and the SFTP container like this:

docker run -p 22:22 -d atmoz/sftp test_user:pass:::root_folder

Notifications

Slack (incoming webhook)

If your or your team are using slack, you can send and receive notifications about failed dags using dag_failure_slack_notification_webhook method (in notifications.slack.webhook). You need to create a new Slack App and enable the "Incoming Webhooks". More info about sending messages using Slack Incoming Webhooks here.

You need to create a new Airflow connection with the name SLACK_WEBHOOK_NOTIFICATION_CONN (or AIRFLOW_CONN_SLACK_WEBHOOK_NOTIFICATION_CONN if you are using environment variables.)

Default message will have the format below:

image

But you can custom this message providing the below parameters:

  • text (str)[optional]: the main message will appear in the notification. If you provide your slack block will be ignored.
  • blocks (dict)[optional]: you can provide your custom slack blocks for your message.
  • include_blocks (bool)[optional]: indicates if the default block have to be used. If you provide your own blocks will be ignored.
  • source (typing.Literal['DAG', 'TASK'])[optional]: source of the failure (dag or task). Default: DAG.
  • image_url: (str)[optional] image url for you notification (accessory). You can use AIRFLOW_TOOLS__SLACK_NOTIFICATION_IMG_URL instead.
Example of use in a Dag
from datetime import datetime, timedelta

from airflow import DAG

from airflow.operators.bash import BashOperator
from airflow_tools.notifications.slack.webhook import (
    dag_failure_slack_notification_webhook,    # <--- IMPORT
)

with DAG(
    "slack_notification_dkl",
    description="Slack notification on fail",
    schedule=timedelta(days=1),
    start_date=datetime(2021, 1, 1),
    catchup=False,
    tags=["example"],
    on_failure_callback=dag_failure_slack_notification_webhook(),  # <--- HERE
) as dag:

    t = BashOperator(
        task_id="failing_test",
        depends_on_past=False,
        bash_command="exit 1",
        retries=1,
    )


if __name__ == "__main__":
    dag.test()

You can used only in a task providing the parameter source='TASK':

    t = BashOperator(
        task_id="failing_test",
        depends_on_past=False,
        bash_command="exit 1",
        retries=1,
        on_failure_callback=dag_failure_slack_notification_webhook(source='TASK')
    )

You can add a custom message (ignoring the slack blocks for a formatted message):

with DAG(
    ...
    on_failure_callback=dag_failure_slack_notification_webhook(
        text='The task {{ ti.task_id }} failed',
        include_blocks=False
    ),
) as dag:

Or you can pass your own Slack blocks:

custom_slack_blocks = {
    "type": "section",
    "text": {
        "type": "mrkdwn",
        "text": "<https://api.slack.com/reference/block-kit/block|This is an example using custom Slack blocks>"
    }
}

with DAG(
    ...
    on_failure_callback=dag_failure_slack_notification_webhook(
        blocks=custom_slack_blocks
    ),
) as dag:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

airflow_tools-0.6.11.tar.gz (19.4 kB view details)

Uploaded Source

Built Distribution

airflow_tools-0.6.11-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file airflow_tools-0.6.11.tar.gz.

File metadata

  • Download URL: airflow_tools-0.6.11.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.8 Darwin/23.4.0

File hashes

Hashes for airflow_tools-0.6.11.tar.gz
Algorithm Hash digest
SHA256 774aff5605c45b32dba83e672ee485339960b04eefb0e7d0570b86d199f3194d
MD5 4afd0e727e24cbfcdf0bcdea469327cf
BLAKE2b-256 77bc6d9a35016e540f6b6316c60f23ea13acf0506bcf6866a59fdd87ad928ddb

See more details on using hashes here.

File details

Details for the file airflow_tools-0.6.11-py3-none-any.whl.

File metadata

  • Download URL: airflow_tools-0.6.11-py3-none-any.whl
  • Upload date:
  • Size: 25.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.8 Darwin/23.4.0

File hashes

Hashes for airflow_tools-0.6.11-py3-none-any.whl
Algorithm Hash digest
SHA256 358481be61216f035e3847265a7aa6069bc7fce891ca16c9cac07dfe480db51a
MD5 cbbd0f33626021aed8018afb031f6738
BLAKE2b-256 4ff00230e5a54f75278681e4480a263453c1d18f341724d1ceaae58cc63cfd02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page