Skip to main content

Updated and improved implementation of the self-instruct system.

Project description

airoboros: using large language models to fine-tune large language models

This is my take on implementing the Self-Instruct paper. The approach is quite heavily modified, and does not use any human-generated seeds.

This updated implementation supports either the /v1/completions endpoint or /v1/chat/completions, which is particularly useful in that it supports gpt-4 and gpt-3.5-turbo (which is 1/10 the cost of text-davinci-003).

Key differences

  • support for either /v1/completions or /v1/chat/completions APIs (which allows gpt-3.5-turbo instead of text-davinci-003, as well as gpt-4 if you have access)
  • support for custom topics list, custom topic generation prompt, or completely random topics
  • in-memory vector db (Chroma) for similarity comparison, which is much faster than calculating rouge score for each generated instruction
  • (seemingly) better prompts, which includes injection of random topics to relate the instructions to, which creates much more diverse synthetic instructions
  • asyncio producers with configurable batch size
  • several "instructors", each targetting specific use-cases, such as Orca style reasoning/math, role playing, etc.
  • tries to ensure the context, if provided, is relevant to the topic and contains all the information that would be necessary to respond to the instruction, and nost just a link to article/etc.
  • generally speaking, this implementation tries to reduce some of the noise

Generating instructions

NEW - 2023-07-18

To better accomodate the plethora of options, the configuration has been moved to a YAML config file.

Please create a copy of example-config.yaml and configure as desired.

Once you have the desired configuration, run:

airoboros generate-instructions --config-path /path/to/config.yaml

Generating topics

NEW - 2023-07-18

Again, this is now all YAML configuration based! Please create a customized version of the YAML config file, then run:

airoboros generate-topics --config-path /path/to/config.yaml

You can override the topic_prompt string in the configuration to use a different topic generation prompt.

Support the work

https://bmc.link/jondurbin

ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11

BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf

Models (research use only):

gpt-4 versions

llama-2 base model

Latest version (2.0 / m2.0 datasets)

Previous generation (1.4.1 dataset)

original llama base model

Latest version (2.0 / m2.0 datasets)

Previous generation (1.4.1 dataset)

mpt-30b base model

gpt-3.5-turbo versions

Datasets (subject to OpenAI license):

Coming soon

Scripts for fine-tuning various models using the self-instruct (and human-generated) prompts.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

airoboros-2.0.21.tar.gz (61.6 kB view details)

Uploaded Source

Built Distribution

airoboros-2.0.21-py3-none-any.whl (85.9 kB view details)

Uploaded Python 3

File details

Details for the file airoboros-2.0.21.tar.gz.

File metadata

  • Download URL: airoboros-2.0.21.tar.gz
  • Upload date:
  • Size: 61.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for airoboros-2.0.21.tar.gz
Algorithm Hash digest
SHA256 c72898aaf8801002303347e389ea3424b55249a0dbe6b42e74d35ea72e8825f9
MD5 1134ac4e0a4d043600028ee2cfed3f72
BLAKE2b-256 d255422005d557ba4de21e65fa9d27162ae40fac381ec37b6d9736693cd96d8a

See more details on using hashes here.

File details

Details for the file airoboros-2.0.21-py3-none-any.whl.

File metadata

  • Download URL: airoboros-2.0.21-py3-none-any.whl
  • Upload date:
  • Size: 85.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for airoboros-2.0.21-py3-none-any.whl
Algorithm Hash digest
SHA256 a159366f1fa025cff22adc5e1c4b138588058d193987d35ac5ac9967d720f5f7
MD5 31711061e62d211ea243ae94c1b5c60f
BLAKE2b-256 29f819900117277bb758cdae5499cf64b104a2294e17928c6d68963ad8c041ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page