Skip to main content

A model wrapper for automatic model design and visualization purposes.

Project description

AIronSuit

AIronSuit (Beta) is a Python library for automatic model design/selection and visualization purposes built to work with tensorflow as a backend. It aims to accelerate the development of deep learning approaches for research/development purposes by providing components relying on cutting edge approaches. It is flexible and its components can be replaced by customized ones from the user. The user mostly focuses on defining the input and output, and AIronSuit takes care of its optimal mapping.

Key features:

  1. Automatic model design/selection with hyperopt.
  2. Parallel computing for multiple models across multiple GPUs when using a k-fold approach.
  3. Built-in model trainer that saves training progression to be visualized with TensorBoard.
  4. Machine learning tools from AIronTools: model_constructor, block_constructor, layer_constructor, preprocessing utils, etc.
  5. Flexibility: the user can replace AIronSuit components by a customized one. For instance, the model constructor can be easily replaced by a customized one.

Installation

pip install aironsuit

Example

# Databricks notebook source
import numpy as np
from hyperopt.hp import choice
from hyperopt import Trials
from tensorflow.keras.datasets import mnist
from tensorflow.keras.optimizers import Adam
import os

from aironsuit.suit import AIronSuit
from airontools.preprocessing import train_val_split
from airontools.constructors.models.unsupervised import ImageVAE
from airontools.tools import path_management
HOME = os.path.expanduser("~")
OS_SEP = os.path.sep

# COMMAND ----------

# Example Set-Up #

model_name = 'VAE_NN'
working_path = os.path.join(HOME, 'airon', model_name) + OS_SEP
num_classes = 10
batch_size = 128
epochs = 30
patience = 3
max_evals = 3
max_n_samples = None
precision = 'float32'

# COMMAND ----------

# Make/remove paths
path_management(working_path, modes=['rm', 'make'])

# COMMAND ----------

# Load and preprocess data
(train_dataset, target_dataset), _ = mnist.load_data()
if max_n_samples is not None:
    train_dataset = train_dataset[-max_n_samples:, ...]
    target_dataset = target_dataset[-max_n_samples:, ...]
train_dataset = np.expand_dims(train_dataset, -1) / 255

# Split data per parallel model
x_train, x_val, _, meta_val, _ = train_val_split(input_data=train_dataset, meta_data=target_dataset)

# COMMAND ----------

# VAE Model constructor


def vae_model_constructor(latent_dim):

    # Create VAE model and compile it
    vae = ImageVAE(latent_dim)
    vae.compile(optimizer=Adam())

    return vae

# COMMAND ----------

# Hyper-parameter space
hyperparam_space = {'latent_dim': choice('latent_dim', np.arange(3, 6))}

# COMMAND ----------

# Invoke AIronSuit
aironsuit = AIronSuit(
    model_constructor=vae_model_constructor,
    force_subclass_weights_saver=True,
    force_subclass_weights_loader=True,
    path=working_path
)

# COMMAND ----------

# Automatic Model Design
print('\n')
print('Automatic Model Design \n')
aironsuit.design(
    x_train=x_train,
    x_val=x_val,
    hyper_space=hyperparam_space,
    max_evals=max_evals,
    epochs=epochs,
    trials=Trials(),
    name=model_name,
    seed=0,
    patience=patience
)
aironsuit.summary()
del x_train

# COMMAND ----------

# Get latent insights
aironsuit.visualize_representations(
    x_val,
    metadata=meta_val,
    hidden_layer_name='z',
)

alt text

More Examples

see usage examples in aironsuit/examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

aironsuit-0.1.20-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file aironsuit-0.1.20-py3-none-any.whl.

File metadata

  • Download URL: aironsuit-0.1.20-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for aironsuit-0.1.20-py3-none-any.whl
Algorithm Hash digest
SHA256 b0cf6dc438cb8819eec187fe4febd5404e86b2797875570dee53a214877e72fe
MD5 cef438a18ae3ccbdb3e8f0e2ec700fbc
BLAKE2b-256 472689d4fbf22310381bb84fa2187724acfe1a2dc17e991f412856182d9e0f20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page