airt client
Project description
Python client for airt service 2022.3.1rc0
A python library encapsulating airt service REST API available at:
Docs
For full documentation, Please follow the below link:
How to install
If you don't have the airt library already installed, please install it using pip.
pip install airt-client
How to use
To access the airt service, you must create a developer account. Please fill out the signup form below to get one:
Upon successful verification, you will receive the username/password for the developer account in an email.
Finally, you need an application token to access all the APIs in airt service. Please call the Client.get_token
method with the username/password to get one. You
can either pass the username, password, and server address as parameters to the Client.get_token
method or store the same in the AIRT_SERVICE_USERNAME,
AIRT_SERVICE_PASSWORD, and AIRT_SERVER_URL environment variables.
Upon successful authentication, the airt services will be available to access.
For more information, please check:
Below is a minimal example explaining how to train a model and make predictions using airt services.
!!! info
In the below example, the username, password, and server address are stored in **AIRT_SERVICE_USERNAME**, **AIRT_SERVICE_PASSWORD**, and **AIRT_SERVER_URL** environment variables.
0. Get token
from airt.client import Client, DataSource, DataBlob
Client.get_token()
1. Connect data
# In this case, the input data is a CSV file strored in an AWS S3 bucket.
# Pulling the data into airt server
data_blob = DataBlob.from_s3(
uri="s3://test-airt-service/ecommerce_behavior_csv"
)
data_blob.progress_bar()
# Preprocessing the data
data_source = data_blob.from_csv(
index_column="user_id",
sort_by="event_time"
)
data_source.progress_bar()
print(data_source.head())
100%|██████████| 1/1 [00:35<00:00, 35.35s/it]
100%|██████████| 1/1 [00:30<00:00, 30.32s/it]
event_time event_type product_id category_id \
0 2019-11-06 06:51:52+00:00 view 26300219 2053013563424899933
1 2019-11-05 21:25:44+00:00 view 2400724 2053013563743667055
2 2019-11-05 21:27:43+00:00 view 2400724 2053013563743667055
3 2019-11-05 19:38:48+00:00 view 3601406 2053013563810775923
4 2019-11-05 19:40:21+00:00 view 3601406 2053013563810775923
5 2019-11-06 05:39:21+00:00 view 15200134 2053013553484398879
6 2019-11-06 05:39:34+00:00 view 15200134 2053013553484398879
7 2019-11-05 20:25:52+00:00 view 1005106 2053013555631882655
8 2019-11-05 23:13:43+00:00 view 31501222 2053013558031024687
9 2019-11-06 07:00:32+00:00 view 1005115 2053013555631882655
category_code brand price \
0 None sokolov 40.54
1 appliances.kitchen.hood bosch 246.85
2 appliances.kitchen.hood bosch 246.85
3 appliances.kitchen.washer beko 195.60
4 appliances.kitchen.washer beko 195.60
5 None racer 55.86
6 None racer 55.86
7 electronics.smartphone apple 1422.31
8 None dobrusskijfarforovyjzavod 115.18
9 electronics.smartphone apple 915.69
user_session
0 d1fdcbf1-bb1f-434b-8f1a-4b77f29a84a0
1 b097b84d-cfb8-432c-9ab0-a841bb4d727f
2 b097b84d-cfb8-432c-9ab0-a841bb4d727f
3 d18427ab-8f2b-44f7-860d-a26b9510a70b
4 d18427ab-8f2b-44f7-860d-a26b9510a70b
5 fc582087-72f8-428a-b65a-c2f45d74dc27
6 fc582087-72f8-428a-b65a-c2f45d74dc27
7 79d8406f-4aa3-412c-8605-8be1031e63d6
8 e3d5a1a4-f8fd-4ac3-acb7-af6ccd1e3fa9
9 15197c7e-aba0-43b4-9f3a-a815e31ade40
2. Train
from datetime import timedelta
model = data_source.train(
client_column="user_id",
target_column="event_type",
target="*purchase",
predict_after=timedelta(hours=3),
)
model.progress_bar()
print(model.evaluate())
100%|██████████| 5/5 [00:00<00:00, 147.61it/s]
eval
accuracy 0.985
recall 0.962
precision 0.934
3. Predict
predictions = model.predict()
predictions.progress_bar()
print(predictions.to_pandas().head())
100%|██████████| 3/3 [00:10<00:00, 3.38s/it]
Score
user_id
520088904 0.979853
530496790 0.979157
561587266 0.979055
518085591 0.978915
558856683 0.977960
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for airt_client-2022.3.1rc0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5aa51d72373b9d4589496a8535fe535c7b233b2ea3eba91523443e62caa880dd |
|
MD5 | e85ab82d016e6f5a7adb70c3cf50e17a |
|
BLAKE2b-256 | 14c343fca2248b0fbdcd84fe55e19f640471629474c0ca25b874d69702c16776 |