airt client
Project description
Python client for airt service 2022.5.0
A python library encapsulating airt service REST API available at:
Docs
For full documentation, Please follow the below link:
How to install
If you don't have the airt library already installed, please install it using pip.
pip install airt-client
How to use
To access the airt service, you must create a developer account. Please fill out the signup form below to get one:
Upon successful verification, you will receive the username/password for the developer account in an email.
Finally, you need an application token to access all the APIs in airt service. Please call the Client.get_token
method with the username/password to get one.
You can either pass the username, password, and server address as parameters to the Client.get_token
method or store the same in the AIRT_SERVICE_USERNAME,
AIRT_SERVICE_PASSWORD, and AIRT_SERVER_URL environment variables.
After successful authentication, the airt services will be available to access.
For more information, please check:
Below is a minimal example explaining how to train a model and make predictions using airt services.
!!! info
In the below example, the username, password, and server address are stored in **AIRT_SERVICE_USERNAME**, **AIRT_SERVICE_PASSWORD**, and **AIRT_SERVER_URL** environment variables.
0. Get token
from airt.client import Client, DataSource, DataBlob
Client.get_token()
1. Connect data
# In this case, the input data is a CSV file strored in an AWS S3 bucket.
# Pulling the data into airt server
data_blob = DataBlob.from_s3(
uri="s3://test-airt-service/ecommerce_behavior_csv"
)
data_blob.progress_bar()
# Preprocessing the data
data_source = data_blob.from_csv(
index_column="user_id",
sort_by="event_time"
)
data_source.progress_bar()
print(data_source.head())
100%|██████████| 1/1 [00:35<00:00, 35.34s/it]
100%|██████████| 1/1 [00:30<00:00, 30.30s/it]
event_time event_type product_id \
user_id
10300217 2019-11-06 06:51:52+00:00 view 26300219
253299396 2019-11-05 21:25:44+00:00 view 2400724
253299396 2019-11-05 21:27:43+00:00 view 2400724
272811580 2019-11-05 19:38:48+00:00 view 3601406
272811580 2019-11-05 19:40:21+00:00 view 3601406
288929779 2019-11-06 05:39:21+00:00 view 15200134
288929779 2019-11-06 05:39:34+00:00 view 15200134
310768124 2019-11-05 20:25:52+00:00 view 1005106
315309190 2019-11-05 23:13:43+00:00 view 31501222
339186405 2019-11-06 07:00:32+00:00 view 1005115
category_id category_code \
user_id
10300217 2053013563424899933 None
253299396 2053013563743667055 appliances.kitchen.hood
253299396 2053013563743667055 appliances.kitchen.hood
272811580 2053013563810775923 appliances.kitchen.washer
272811580 2053013563810775923 appliances.kitchen.washer
288929779 2053013553484398879 None
288929779 2053013553484398879 None
310768124 2053013555631882655 electronics.smartphone
315309190 2053013558031024687 None
339186405 2053013555631882655 electronics.smartphone
brand price \
user_id
10300217 sokolov 40.54
253299396 bosch 246.85
253299396 bosch 246.85
272811580 beko 195.60
272811580 beko 195.60
288929779 racer 55.86
288929779 racer 55.86
310768124 apple 1422.31
315309190 dobrusskijfarforovyjzavod 115.18
339186405 apple 915.69
user_session
user_id
10300217 d1fdcbf1-bb1f-434b-8f1a-4b77f29a84a0
253299396 b097b84d-cfb8-432c-9ab0-a841bb4d727f
253299396 b097b84d-cfb8-432c-9ab0-a841bb4d727f
272811580 d18427ab-8f2b-44f7-860d-a26b9510a70b
272811580 d18427ab-8f2b-44f7-860d-a26b9510a70b
288929779 fc582087-72f8-428a-b65a-c2f45d74dc27
288929779 fc582087-72f8-428a-b65a-c2f45d74dc27
310768124 79d8406f-4aa3-412c-8605-8be1031e63d6
315309190 e3d5a1a4-f8fd-4ac3-acb7-af6ccd1e3fa9
339186405 15197c7e-aba0-43b4-9f3a-a815e31ade40
2. Train
from datetime import timedelta
model = data_source.train(
client_column="user_id",
target_column="event_type",
target="*purchase",
predict_after=timedelta(hours=3),
)
model.progress_bar()
print(model.evaluate())
100%|██████████| 5/5 [00:00<00:00, 134.71it/s]
eval
accuracy 0.985
recall 0.962
precision 0.934
3. Predict
predictions = model.predict()
predictions.progress_bar()
print(predictions.to_pandas().head())
100%|██████████| 3/3 [00:10<00:00, 3.37s/it]
Score
user_id
520088904 0.979853
530496790 0.979157
561587266 0.979055
518085591 0.978915
558856683 0.977960
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for airt_client-2022.5.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd72457fd8f591c95d1e785d7148163d9868986e21dbe99e4a79d405888ccd20 |
|
MD5 | 944b88352627341227eb2349ff77bcf8 |
|
BLAKE2b-256 | e2cee6ebd6493bc6a7c26333ea4e5245a4a81788de83734c0143acc9c7db3c7e |