Skip to main content

AIscalate your Jupyter Notebook Prototypes into Airflow Data Products

Project description

AIscalator

Key Features

Aiscalator is a toolbox to enable your team streamlining processes from innovation to productization with:

  • Jupyter workbench
    • Explore Data, Prototype Solutions

  • Docker wrapper tools
    • Share Code, Deploy Reproducible Environments

  • Airflow machinery
    • Schedule Tasks, Refine Products

  • Data Science and Data Engineering best practices

From Prototype to Production Workflow

Quick Start

Installation

Test if prerequisite softwares are installed:

docker --version
docker-compose --version
pip --version

Install AIscalator tool:

git clone https://github.com/Aiscalate/aiscalator.git
cd aiscalator/
make install

Great, we are now ready to use the AIscalator!

The following setup commands are completely optional because they are dealing with prebuilding Docker images. If you choose not to do it at this point, they will get built later on whenever they are required.

However, since producing a Docker image requires a certain amount of time to download, install packages, and sometimes even compiling them, these installation steps can be initiated right away all at once. Thus, you should be free to go enjoy a nice coffee break!

You might want to customize your environment with the AIscalator, this will ask you few questions:

aiscalator setup

Build docker images to run Jupyter environments:

aiscalator jupyter setup

Build docker image to run Airflow:

# aiscalator airflow setup <path-to-workspace-folder>
# for example,
aiscalator airflow setup $PWD

Start working

AIscalator commands dealing with jupyter are defining tasks in Airflow jargon; In our case, they are all wrapped inside a Docker container. We also refer to them as Steps.

Whereas AIscalator commands about airflow are made to author, schedule and monitor DAGs (Directed Acyclic Graphs). They define how a workflow is composed of multiple steps, their dependencies and execution times or triggers.

Jupyter

Create a new Jupyter notebook to work on, define corresponding AIscalator step:

# aiscalator jupyter new <path-to-store-new-files>
# For example,
aiscalator jupyter new project
# (CTRL + c to kill when done)

Or you can edit an existing AIscalator step:

# aiscalator jupyter edit <aiscalator step>
# For example, if you cloned the git repository:
aiscalator jupyter edit resources/example/example.conf
# (CTRL + c to kill when done)

Run the step without GUI:

# aiscalator jupyter run <aiscalator task>
# For example, if you cloned the git repository:
aiscalator jupyter run resources/example/example.conf

Airflow

Start Airflow services:

aiscalator airflow start

Create a new AIscalator DAG, define the airflow job:

# aiscalator airflow new <path-to-store-new-files>
# For example,
aiscalator airflow new project
# (CTRL + c to kill when done)

Or you can edit an existing AIscalator DAG:

# aiscalator airflow edit <aiscalator DAG>
# For example, if you cloned the git repository:
aiscalator airflow edit resources/example/example.conf
# (CTRL + c to kill when done)

Schedule AIscalator DAG into local airflow dags folder:

# aiscalator airflow push <aiscalator DAG>
# For example, if you cloned the git repository:
aiscalator airflow push resources/example/example.conf

Stop Airflow services:

aiscalator airflow stop

History

0.1.0 (2018-11-07)

  • First Alpha release on PyPI.

0.1.11 (2019-04-26)

  • Added docker_image.docker_extra_options list feature

0.1.13 (2019-06-23)

  • Handle errors in Jupytext conversions

  • aiscalator run subcommand exit code propagated to cli

  • Concurrent aiscalator run commands is possible

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiscalator-0.1.18.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

aiscalator-0.1.18-py3-none-any.whl (59.6 kB view details)

Uploaded Python 3

File details

Details for the file aiscalator-0.1.18.tar.gz.

File metadata

  • Download URL: aiscalator-0.1.18.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.6

File hashes

Hashes for aiscalator-0.1.18.tar.gz
Algorithm Hash digest
SHA256 290dd4398e30f8dce374fa5b0dd96190ac544d351583bb5144187a6221571024
MD5 042181c184c40b4aaa6ffef7b66a3bfc
BLAKE2b-256 5d5f3c04dd936ee45debf278dd4ff75fea57aca28e0355e8ad8abf9b5aa785cf

See more details on using hashes here.

File details

Details for the file aiscalator-0.1.18-py3-none-any.whl.

File metadata

  • Download URL: aiscalator-0.1.18-py3-none-any.whl
  • Upload date:
  • Size: 59.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.5.6

File hashes

Hashes for aiscalator-0.1.18-py3-none-any.whl
Algorithm Hash digest
SHA256 a150b9e8215a367e7b7af0eca86ef2eaea6827dc56e205737a62b6fe0a07a9c4
MD5 68e20675d83dd2e70805a610bd399f5c
BLAKE2b-256 810d8af103e58ad9a61d98079ee5a7375baefbc7785967904158d5d119a28066

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page