Skip to main content

Package with techniques of artificial immune systems.

Project description

Artificial Immune Systems Package.


Select the language / Selecione o Idioma:

Package documentation / Documentação do pacote:


English

Summary:

  1. Introduction.
  2. Installation.
    1. Dependencies
    2. User installation
  3. Examples.

Introduction

The AISP is a python package that implements artificial immune systems techniques, distributed under the GNU Lesser General Public License v3.0 (LGPLv3).

The package started in 2022 as a research package at the Federal Institute of Northern Minas Gerais - Salinas campus (IFNMG - Salinas).

Artificial Immune Systems (AIS) are inspired by the vertebrate immune system, creating metaphors that apply the ability to detect and catalog pathogens, among other features of this system.

Algorithms implemented:
  • [x] Negative Selection.
  • [ ] Clonal Selection Algorithms.
  • [ ] Dendritic Cells.
  • [ ] Immune Network Theory.

Installation

The module requires installation of python 3.8.10 or higher.

Dependencies:
Packages Version
numpy ≥ 1.22.4
scipy ≥ 1.8.1
tqdm ≥ 4.64.1
User installation

The simplest way to install AISP is using pip:

pip install aisp

Examples:


Example using the negative selection technique (nsa):

In the example present in this notebook, 500 random samples were generated, arranged in two groups, one for each class.

Below are some examples that use a database for classification with the Jupyter notebook tool.

Negative Selection:


Português

Sumário:

  1. Introdução.
  2. Instalação.
    1. Dependências
    2. Instalação do usuário
  3. Exemplos.

Introdução

O AISP é um pacote python que implementa as técnicas dos sistemas imunológicos artificiais, distribuído sob a licença GNU Lesser General Public License v3.0 (LGPLv3).

O pacote teve início no ano de 2022 como um pacote de pesquisa no instituto federal do norte de minas gerais - campus salinas (IFNMG - Salinas).

Os sistemas imunológicos artificiais (SIA) inspiram-se no sistema imunológico dos vertebrados, criando metáforas que aplicam a capacidade de reconhecer e catalogar os patógenos, entre outras características desse sistema.

Algoritmos implementados:
  • [x] Seleção Negativa.
  • [ ] Algoritmos de Seleção Clonal.
  • [ ] Células Dendríticas.
  • [ ] Teoria da Rede Imune.

Instalação

O módulo requer a instalação do python 3.8.10 ou superior.

Dependências:
Pacotes Versão
numpy ≥ 1.22.4
scipy ≥ 1.8.1
tqdm ≥ 4.64.1
Instalação do usuário

A maneira mais simples de instalação do AISP é utilizando o pip:

pip install aisp

Exemplos:


Exemplo utilizando a técnica de seleção negativa (nsa):

No exemplo presente nesse notebook, gerando 500 amostras aleatórias dispostas em dois grupos um para cada classe.

A seguir alguns exemplos que utiliza-se de base de dados para classificação com a ferramenta Jupyter notebook.

Seleção Negativa:


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aisp-0.1.33.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

aisp-0.1.33-py3-none-any.whl (22.5 kB view details)

Uploaded Python 3

File details

Details for the file aisp-0.1.33.tar.gz.

File metadata

  • Download URL: aisp-0.1.33.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.4

File hashes

Hashes for aisp-0.1.33.tar.gz
Algorithm Hash digest
SHA256 e7d4cb0a4aaced84ce3837a03291a3a67828875d77e845c70fc367771606e245
MD5 6802c5f004359b8d146e33bdaa9b4ad6
BLAKE2b-256 c92c6b0bffed18f4c4200a577b8a5ae94317ff904230e342a743a10d2cadb13a

See more details on using hashes here.

File details

Details for the file aisp-0.1.33-py3-none-any.whl.

File metadata

  • Download URL: aisp-0.1.33-py3-none-any.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.4

File hashes

Hashes for aisp-0.1.33-py3-none-any.whl
Algorithm Hash digest
SHA256 adfed3b6e763e2a746267a4eeea1ee42b3ea98510501ff2b855a67084fdf5631
MD5 1c5f60016c314ea31fe7cbe83ab78e27
BLAKE2b-256 feb01cebf1a5f79494c629d8ed48146a5ee1e0cbb16de68bf00c3ba9d1a029af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page