Skip to main content

Utilities for interacting with the AI Squared Technology Stack

Project description

AISquared

This package contains utilities to interact with the AI Squared technology stack, particularly with developing and deploying models to the AI Squared Browser Extension or other applications developed through the AI Squared JavaScript SDK.

Installation

This package is available through Pypi and can be installed by running the following command:

pip install aisquared

Alternatively, the latest version of the software can be installed directly from GitHub using the following command

pip install git+https://github.com/AISquaredInc/aisquared

Capabilities

This package is currently in a state of constant development, so it is likely that breaking changes can be made at any time. We will work diligently to document changes and make stable releases in the future.

The aisquared package currently contains one subpackage, the aisquared.config package. This package holds objects for building the configuration files that need to be included with converted model files for use within the AI Squared Extension. The contents of the config subpackage contain both pre- and postprocessing steps as well as harvesting, analytic, and rendering objects to use with the model. The following will explain the functionality of the config package:

aisquared.config

The aisquared.config subpackage contains the following objects:

  • ModelConfiguration
    • The ModelConfiguration object is the final object to be used to create the configuration file. It takes as input a list of harvesting steps, list of preprocessing steps, a list of analytics, a list of postprocessing steps, a list of rendering steps, an optional MLFlow URI, an optional MLFlow user, and an optional MLFlow token

aisquared.config.harvesting

The aisquared.config.harvesting subpackage contains the following objects:

  • ImageHarvester
    • The ImageHarvester class indicates the harvesting of images within the DOM to perform prediction on
  • TextHarvester
    • The TextHarvester class indicates the harvesting of text within the DOM to perform prediction on

aisquared.config.preprocessing

The aisquared.config.preprocessing subpackage contains the following objects:

  • ImagePreprocessor
    • The ImagePreprocessor class takes in preprocessing steps (defined below) which define preprocessing steps for images.
  • TabularPreprocessor
    • The TabularPreprocessor class takes in preprocessing steps (defined below) which define preprocessing steps for tabular data.
  • TextPreprocessor
    • The TextPreprocessor class takes in preprocessing steps (defined below) which define preprocessing steps for text data.

aisquared.config.analytic

The aisquared.config.analytic subpackage contains the following objects:

  • LocalAnalytic
    • The LocalAnalytic class indicates the use of an analytic or lookup table from a local file
  • LocalModel
    • The LocalModel class indicates the use of a model from a local file
  • DeployedAnalytic
    • The DeployedAnalytic class indicates the use of an analytic or lookup table from a remote resource
  • DeployedModel
    • The DeployedModel class indicates the use of a model deployed to a remote resource

aisquared.config.postprocessing

The aisquared.config.postprocessing subpackage contains the following objects:

  • Regression
    • The Regression object is a postprocessing class for models which perform regression. Since it is common to train regression models by scaling regression outputs to values between 0 and 1, this class is designed to convert output values between 0 and 1 to their original values, corresponding to min and max when the class is instantiated.
  • BinaryClassification
    • The BinaryClassification object is a postprocessing class for models which perform binary classification. The class is instantiated with a label map and a cutoff value used to identify when the positive class (class 1) is identified.
  • MulticlassClassification
    • The MulticlassClassification object is a postprocessing class for models which perform multiclass classification. The class is instantiated with a label map only.
  • ObjectDetection
    • The ObjectDetection object is a postprocessing class for models which perform object detection. The class is instantiated with a label map and a cutoff value for identification.

aisquared.config.rendering

The aisquared.config.rendering subpackage contains the following objects:

  • ImageRendering
    • The ImageRendering object is a rendering class for rendering single predictions on images.
  • ObjectRendering
    • The ObjectRendering object is a rendering class for rendering object detection predictions on images.
  • WordRendering
    • The WordRendering object is a rendering class for rendering highlights, underlines, or badges on individual words.
  • DocumentRendering
    • The DocumentRendering object is a rendering class for rendering document predictions.

Preprocessing Steps

The aisquared.config.preprocessing subpackage contains PreProcStep objects, which are then fed into the ImagePreprocessor, TabularPreprocessor, and TextPreprocessor classes. The PreProcStep classes are:

  • ZScore
    • This class configures standard normalization procedures for tabular data
  • MinMax
    • This class configures Min-Max scaling procedures for tabular data
  • OneHot
    • This class configures One Hot encoding for columns of tabular data
  • AddValue
    • This class configures adding values to pixels in image data
  • SubtractValue
    • This class configures subtracting values to pixels in image data
  • MultiplyValue
    • This class configures multiplying pixel values by a value in image data
  • DivideValue
    • This class configures dividing pixel values by a value in image data
  • ConvertToColor
    • This class configures converting images to the specified color scheme
  • Resize
    • This class configures image resize procedures
  • Tokenize
    • This class configures how text will be tokenized
  • RemoveCharacters
    • This class configures which characters should be removed from text
  • ConvertToCase
    • This class configures which case - upper or lower - text should be converted to
  • ConvertToVocabulary
    • This class configures how text tokens should be converted to vocabulary integers
  • PadSequences
    • This class configures how padding should occur given a sequence of text tokens converted to a sequence of integers

These step objects can then be placed within the TabularPreprocessor, ImagePreprocessor, or TextPreprocessor objects. For the TabularPreprocessor, the ZScore, MinMax, and OneHot Steps are supported. For the ImagePreprocessor, the AddValue, SubtractValue, MultiplyValue, DivideValue, ConvertToColor, and Resize Steps are supported. For the TextPreprocessor, the Tokenize, RemoveCharacters, ConvertToCase, ConvertToVocabulary, and PadSequences Steps are supported

Final Configuration and Model Creation

Once harvesting, preprocessing, analytic, postprocessing, and rendering objects have been created, these objects can then be passed to the aisquared.config.ModelConfiguration class. This class utilizes the objects passed to it to build the entire model configuration automatically.

Once the ModelConfiguration object has been created with the required parameters, the .compile() method can be used to create a file with the .air extension that can be loaded into an application which utilizes the AI Squared JavaScript SDK.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aisquared-0.0.3.dev2.tar.gz (16.7 kB view details)

Uploaded Source

Built Distribution

aisquared-0.0.3.dev2-py3-none-any.whl (97.5 kB view details)

Uploaded Python 3

File details

Details for the file aisquared-0.0.3.dev2.tar.gz.

File metadata

  • Download URL: aisquared-0.0.3.dev2.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for aisquared-0.0.3.dev2.tar.gz
Algorithm Hash digest
SHA256 559b2a2a719100dad71c3efa7bd590a238c38487066cb8e6852600fe1e3b1b1d
MD5 de2d2d17de3f7dde5e209511a6456eea
BLAKE2b-256 50b2b6dd2a2a3703a857066a25cf7c0c13ce4407c98228fb735fdc50545fef81

See more details on using hashes here.

File details

Details for the file aisquared-0.0.3.dev2-py3-none-any.whl.

File metadata

  • Download URL: aisquared-0.0.3.dev2-py3-none-any.whl
  • Upload date:
  • Size: 97.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for aisquared-0.0.3.dev2-py3-none-any.whl
Algorithm Hash digest
SHA256 2fcd272cc6c56e41400bfb36fdb7e6be63d4e7f8b07459dd3e8464d74243e563
MD5 99d304a9fc2186be4df936493a2a8ef9
BLAKE2b-256 ffe696a07792c8bebf39656e60510d4cbbf4cf6d28d73bd08e4fc59a92a71557

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page