Skip to main content

A (growing) set of client-side APIs to access and utilize clusters, buckets, and objects on AIStore.

Project description

AIS Python SDK

AIS Python SDK provides a (growing) set of client-side APIs to access and utilize AIS clusters, buckets, and objects.

The project is, essentially, a Python port of the AIS Go APIs, with additional objectives that prioritize utmost convenience for Python developers.

Note that only Python 3.x (version 3.6 or later) is currently supported.

Installation

Install as a Package

The latest AIS release can be easily installed either with Anaconda or pip:

$ conda install aistore
$ pip install aistore

Install From Source

If you'd like to work with the current upstream (and don't mind the risk), install the latest master directly from GitHub:

$ git clone https://github.com/NVIDIA/aistore.git

$ cd aistore/sdk/python

$ pip install -e .

Quick Start

In order to interact with your running AIS instance, you will need to create a client object:

from aistore import Client

client = Client("http://localhost:8080")

The newly created client object can be used to interact with your AIS cluster, buckets, and objects. Here are a few ways to do so:

# Check if AIS is deployed and running
client.cluster().is_aistore_running()
# Get cluster information
client.cluster().get_info()
# Create a bucket named "my-ais-bucket"
client.bucket("my-ais-bucket").create()
# Delete bucket named "my-ais-bucket"
client.bucket("my-ais-bucket").delete()
# Head bucket
client.bucket("my-ais-bucket").head()
# Head object
client.bucket("my-ais-bucket").object("my-object").head()
# Put Object
client.bucket("my-ais-bucket").object("my-new-object").put("path-to-object")

If you are using AIS buckets, you can simply omit the provider argument (defaults to ProviderAIS) when instantiating a bucket object (client.bucket("my-ais-bucket").create() is equivalent to client.bucket("my-ais-bucket", provider="ais").create()).

External Cloud Storage Buckets

AIS supports a number of different backend providers or, simply, backends.

For exact definitions and related capabilities, please see terminology.

Many bucket/object operations support remote cloud buckets (third-party backend-based cloud buckets), including a few of the operations shown above. To interact with remote cloud buckets, you need to specify the provider of choice when instantiating your bucket object as follows:

# Head AWS bucket
client.bucket("my-aws-bucket", provider="aws").head()
# Evict GCP bucket
client.bucket("my-gcp-bucket", provider="gcp").evict()
# Get object from Azure bucket
client.bucket("my-azure-bucket", provider="azure").object("filename.ext").get()
# List objects in AWS bucket'
client.bucket("my-aws-bucket", provider="aws").list_objects()

Please note that certain operations do not support external cloud storage buckets. Please refer to the API reference documentation for more information on which bucket/object operations support remote cloud buckets, as well as general information on class and method usage.

More Examples

For more in-depth examples, please see SDK tutorial (Jupyter Notebook).

API Documentation

Module Summary
api.py Contains Client class, which has methods for making HTTP requests to an AIStore server. Includes factory constructors for Bucket, Cluster, and Xaction classes.
cluster.py Contains Cluster class that represents a cluster bound to a client and contains all cluster-related operations, including checking the cluster's health and retrieving vital cluster information.
bucket.py Contains Bucket class that represents a bucket in an AIS cluster and contains all bucket-related operations, including (but not limited to) creating, deleting, evicting, renaming, copying.
object.py Contains class Object that represents an object belonging to a bucket in an AIS cluster, and contains all object-related operations, including (but not limited to) retreiving, adding and deleting objects.
xaction.py Contains class Xaction and all xaction-related operations.

For more information on API usage, refer to the API reference documentation.

PyTorch Integration

You can list and load data from AIS buckets (buckets that are not 3rd party backend-based) and remote cloud buckets (3rd party backend-based cloud buckets) in PyTorch using AISFileLister and AISFileLoader.

AISFileLister and AISFileLoader are now available as a part of official pytorch/data project.

from torchdata.datapipes.iter import AISFileLister, AISFileLoader

# provide list of prefixes to load and list data from
ais_prefixes = ['gcp://bucket-name/folder/', 'aws:bucket-name/folder/', 'ais://bucket-name/folder/', ...]

# List all files for these prefixes using AISFileLister
dp_ais_urls = AISFileLister(url='localhost:8080', source_datapipe=ais_prefixes)

# print(list(dp_ais_urls))

# Load files using AISFileLoader
dp_files = AISFileLoader(url='localhost:8080', source_datapipe=dp_ais_urls)

for url, file in dp_files:
    pass

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aistore-1.0.1.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

aistore-1.0.1-py3-none-any.whl (20.5 kB view details)

Uploaded Python 3

File details

Details for the file aistore-1.0.1.tar.gz.

File metadata

  • Download URL: aistore-1.0.1.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for aistore-1.0.1.tar.gz
Algorithm Hash digest
SHA256 6d8e0d7ed114fbe32136f0641686b982abd91bc71296ef5f13795f6f8c22aebf
MD5 1c5df85abaa0014119677b7938ceeceb
BLAKE2b-256 c7b129cf6f571e82da02e43142b220136728127abb21f3c8447a36d3d2b6e1fb

See more details on using hashes here.

File details

Details for the file aistore-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: aistore-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 20.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for aistore-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1368d7652fec7cfb8f92c0625621da307963a42ad87db6695d2d9ea33a21802a
MD5 749f31e7a4e0320172cb47dea1c29982
BLAKE2b-256 aa130e564d12dd978c05f4ff871291e648e6a3911c1d942af4ff0eca305e302d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page