aitomatic library to interact with Aitomatic product
Project description
WebModel Library User Manual
The WebModel library is a tool for building, tuning, and inference of models that are built with the Aitomatic system. The target users of this library are AI Engineers who use the Aitomatic system.
Requirements
- Python 3.9 or higher
requests
librarypandas
librarynumpy
librarytqdm
library
Installation
The WebModel library can be installed using pip:
pip install 'aitomatic>=1.2.0' --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple
Quick Start
To get started, you can create a WebModel object by passing in the model name and API token:
from aitomatic.api.web_model import WebModel
# load model
API_ACCESS_TOKEN = '<API_ACCESS_TOKEN>'
project_name="<project name>"
model_name = "<model name>"
model = WebModel(api_token=API_ACCESS_TOKEN, project_name=project_name, model_name=model_name)
model.load()
# view model training statistics and info
print(model.stats)
# run model inference
data = {'X': my_dataframe}
response = model.predict({'X': data})
print(response['predictions'])
Methods
The WebModel
class provides several methods for working with the model:
-
Constructor
model_names = WebModel.get_model_names(api_token="YOUR_API_TOKEN", project_name="MyProject")
-
Load model
load
set up the model ready by loading all parameter from Aitomatic model repo.model.load()
- Return the model with loaded params
-
Predict The
predict
method takes a dictionary as input with the data you want to make predictions on. The input data should be a pandas DataFrame, Series, or numpy array with the key "X". The method returns a dictionary with the predictions, with the key "predictions".response = model.predict(input_data={'X': df})
input_data
: input data for prediction, dictionary with data under key 'X'- Return: result of the prediction call in a dictionary where the actual result is under
prediction
key
-
Tuning
tune_model
is a statis method to generate multiple versions of a given model with the set of input paramstune_model( project_name=PROJECT_NAME, base_model=BASE_MODEL_NAME, conclusion_tuning_range=conclusion_threshold_ranges, ml_tuning_params=ML_MODELS_PARAMS, output_model_df_path='tuning.parquet', wait_for_tuning_to_complete=True, prefix="[HUNG7]", )
project_name
: A string containing the name of the Aitomatic project to use.base_model
:A string containing the name of the base model to use.conclusion_tuning_range
: A dictionary specifying the range of values to use for the final layer of the tuned model.ml_tuning_params
: A dictionary specifying the AutoML tuning parameters to use.output_model_df_path
: A string specifying the path to save the resulting DataFrame containing the tuned model's hyperparameters and performance.wait_for_tuning_to_complete
: A boolean specifying whether to wait for the tuning process to complete before returning. Default is True.prefix
: A string containing a prefix to add to the name of the new model. Default is "finetune".- Return A Pandas DataFrame containing the hyperparameters and performance of the tuned model.
-
Log model metrics
log_metrics
is to save the model metric after evaluationmodel.log_metrics("accuracy", 0.95)
-
Get models in project
static
model_names = WebModel.get_model_names(api_token="YOUR_API_TOKEN", project_name="MyProject")
- The
api_token
A string containing the access token for the Aitomatic API. If not provided, the AITOMATIC_API_TOKEN environment variable will be used. - The
project_name
A string containing the name of the Aitomatic project to use. If not provided, the AITOMATIC_PROJECT_ID environment variable will be used. - Return a list of the names of all models in the specified project.
- The
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file aitomatic-1.3.1.tar.gz
.
File metadata
- Download URL: aitomatic-1.3.1.tar.gz
- Upload date:
- Size: 23.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8db24ba9b7e4d6ca5f571152756c044c7bd23e717b889723daa32334dbb3184 |
|
MD5 | f6303ee41c3ac722188b0d677576786d |
|
BLAKE2b-256 | 8c81d0517299cf6cde4e192783dfbab596514d26562a5138e652d1a4ffca2ee7 |
File details
Details for the file aitomatic-1.3.1-py3-none-any.whl
.
File metadata
- Download URL: aitomatic-1.3.1-py3-none-any.whl
- Upload date:
- Size: 27.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85c82fa3a27012ea884ad647aa3635d2dc7f7aef0743b49dc8a42ce33b47d77b |
|
MD5 | ff1d3e584b7485c9da90037f16d02196 |
|
BLAKE2b-256 | 00c1ca0a3ca17a1053b34154a3d740fc47fd070388a93b2ed7e7fec1d4213b03 |