Skip to main content

aitomatic library to interact with Aitomatic product

Project description

WebModel Library User Manual

The WebModel library is a tool for building, tuning, and inference of models that are built with the Aitomatic system. The target users of this library are AI Engineers who use the Aitomatic system.

Requirements

  • Python 3.9 or higher
  • requests library
  • pandas library
  • numpy library
  • tqdm library

Installation

The WebModel library can be installed using pip:

pip install 'aitomatic>=1.2.0' --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple

Quick Start

To get started, you can create a WebModel object by passing in the model name and API token:

from aitomatic.api.web_model import WebModel

# load model
API_ACCESS_TOKEN = '<API_ACCESS_TOKEN>'
project_name="<project name>"
model_name = "<model name>"

model = WebModel(api_token=API_ACCESS_TOKEN, project_name=project_name, model_name=model_name)
model.load()

# view model training statistics and info
print(model.stats)

# run model inference
data = {'X':  my_dataframe}
response = model.predict({'X': data})
print(response['predictions'])

Methods

The WebModel class provides several methods for working with the model:

  • Constructor

    model_names = WebModel.get_model_names(api_token="YOUR_API_TOKEN", project_name="MyProject")
    
  • Load model load set up the model ready by loading all parameter from Aitomatic model repo.

    model.load()
    
    • Return the model with loaded params
  • Predict The predict method takes a dictionary as input with the data you want to make predictions on. The input data should be a pandas DataFrame, Series, or numpy array with the key "X". The method returns a dictionary with the predictions, with the key "predictions".

    response = model.predict(input_data={'X': df})
    
    • input_data: input data for prediction, dictionary with data under key 'X'
    • Return: result of the prediction call in a dictionary where the actual result is under prediction key
  • Tuning tune_model is a statis method to generate multiple versions of a given model with the set of input params

    tune_model(
        project_name=PROJECT_NAME,
        base_model=BASE_MODEL_NAME,
        conclusion_tuning_range=conclusion_threshold_ranges,
        ml_tuning_params=ML_MODELS_PARAMS,
        output_model_df_path='tuning.parquet',
        wait_for_tuning_to_complete=True,
        prefix="[HUNG7]",
    )
    
    • project_name: A string containing the name of the Aitomatic project to use.
    • base_model:A string containing the name of the base model to use.
    • conclusion_tuning_range: A dictionary specifying the range of values to use for the final layer of the tuned model.
    • ml_tuning_params: A dictionary specifying the AutoML tuning parameters to use.
    • output_model_df_path: A string specifying the path to save the resulting DataFrame containing the tuned model's hyperparameters and performance.
    • wait_for_tuning_to_complete: A boolean specifying whether to wait for the tuning process to complete before returning. Default is True.
    • prefix: A string containing a prefix to add to the name of the new model. Default is "finetune".
    • Return A Pandas DataFrame containing the hyperparameters and performance of the tuned model.
  • Log model metrics log_metrics is to save the model metric after evaluation

    model.log_metrics("accuracy", 0.95)
    
  • Get models in project static

    model_names = WebModel.get_model_names(api_token="YOUR_API_TOKEN", project_name="MyProject")
    
    • The api_token A string containing the access token for the Aitomatic API. If not provided, the AITOMATIC_API_TOKEN environment variable will be used.
    • The project_name A string containing the name of the Aitomatic project to use. If not provided, the AITOMATIC_PROJECT_ID environment variable will be used.
    • Return a list of the names of all models in the specified project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aitomatic-1.2.5.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

aitomatic-1.2.5-py3-none-any.whl (24.9 kB view details)

Uploaded Python 3

File details

Details for the file aitomatic-1.2.5.tar.gz.

File metadata

  • Download URL: aitomatic-1.2.5.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for aitomatic-1.2.5.tar.gz
Algorithm Hash digest
SHA256 8c5bb1a4b70afc7c7b02c109f93cb4ef91e8e9715a888a43b9d8b44b364bffca
MD5 508c356e6aef7308c0d86811b1fa314d
BLAKE2b-256 99dd31a046328959435351fc4c759c3d439927c11f3c3e30d0a472f7b2dd4864

See more details on using hashes here.

File details

Details for the file aitomatic-1.2.5-py3-none-any.whl.

File metadata

  • Download URL: aitomatic-1.2.5-py3-none-any.whl
  • Upload date:
  • Size: 24.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for aitomatic-1.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 4dc3574a4d0acda84661635781f1c4da204db6dcd5fda87ccff998aff4e68bde
MD5 712f0f770af33ae3e26dc3d4d0a7ed2f
BLAKE2b-256 b43544a0e9ee7376b5cb17229f0330a1de3752315671b5078db262e842376a81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page