Skip to main content

Science as data transformation

Project description

test codecov

aiuna scientific data for the classroom

WARNING: This project is still subject to major changes, e.g., in the next rewrite.

Bradypus variegatus - By Stefan Laube - (Dreizehenfaultier (Bradypus infuscatus), Gatunsee, Republik Panama), Public Domain

Installation

Examples

Creating data from ARFF file

from aiuna import *

d = file("iris.arff").data

print(d.Xd)
"""
['sepallength', 'sepalwidth', 'petallength', 'petalwidth']
"""
print(d.X[:5])
"""
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]]
"""
print(d.y[:5])
"""
['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa']
"""
from pandas import DataFrame
print(DataFrame(d.y).value_counts())
"""
Iris-setosa        50
Iris-versicolor    50
Iris-virginica     50
dtype: int64
"""

cessing a data field as a pandas DataFrame

#from aiuna import *

#d = dataset.data  # 'iris' is the default dataset
#df = d.X_pd
#print(df.head())
#...

#mycol = d.X_pd["petal length (cm)"]
#print(mycol[:5])
#...

Creating data from numpy arrays

from aiuna import *
import numpy as np

X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([0, 1, 1])
d = new(X=X, y=y)
print(d)
"""
{
    "uuid": "06NLDM4mLEMrHPOaJvEBqdo",
    "uuids": {
        "changed": "3Sc2JjUPMlnNtlq3qdx9Afy",
        "X": "13zbQMwRwU3WB8IjMGaXbtf",
        "Y": "1IkmDz3ATFmgzeYnzygvwDu"
    },
    "step": {
        "id": "06NLDM4mLEMrHPOT2pd5lzo",
        "desc": {
            "name": "New",
            "path": "aiuna.step.new",
            "config": {
                "hashes": {
                    "X": "586962852295d584ec08e7214393f8b2",
                    "Y": "f043eb8b1ab0a9618ad1dc53a00d759e"
                }
            }
        }
    },
    "changed": [
        "X",
        "Y"
    ],
    "X": [
        "[[1 2 3]",
        " [4 5 6]",
        " [7 8 9]]"
    ],
    "Y": [
        "[[0]",
        " [1]",
        " [1]]"
    ]
}
"""

Checking history

from aiuna import *

d = dataset.data  # 'iris' is the default dataset
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    }
}
"""
del d["X"]
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    }
}
"""
d["Z"] = 42
print(d.Z, type(d.Z))
"""
[[42]] <class 'numpy.ndarray'>
"""
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    },
    "05eIWbfCJS7vWJsXBXjoUAh": {
        "name": "Let",
        "path": "aiuna.step.let",
        "config": {
            "field": "Z",
            "value": 42
        }
    }
}
"""

Grants

Part of the effort spent in the present code was kindly supported by Fapesp under supervision of Prof. André C. P. L. F. de Carvalho at CEPID-CeMEAI (Grants 2013/07375-0 – 2019/01735-0).

History

The novel ideias presented here are a result of a years-long process of drafts, thinking, trial/error and rewrittings from scratch in several languages from Delphi, passing through Haskell, Java and Scala to Python - including frustration with well stablished libraries at the time. The fundamental concepts were lightly borrowed from basic category theory concepts like algebraic data structures that permeate many recent tendencies, e.g., in programming language design.

For more details, refer to https://github.com/davips/kururu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiuna-0.2103.15.tar.gz (89.4 kB view details)

Uploaded Source

Built Distribution

aiuna-0.2103.15-py3-none-any.whl (104.4 kB view details)

Uploaded Python 3

File details

Details for the file aiuna-0.2103.15.tar.gz.

File metadata

  • Download URL: aiuna-0.2103.15.tar.gz
  • Upload date:
  • Size: 89.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for aiuna-0.2103.15.tar.gz
Algorithm Hash digest
SHA256 e685b88364f19ea1fa4b9fe49c1ca356fb6ab10a95e4031fabd4b4cfdf6aec75
MD5 fa55de5d126a69ea04a73e1c91371f14
BLAKE2b-256 34b3f86804e4b15e1917720ebab6ea60d1e23cde748875630774c43c62f3d26a

See more details on using hashes here.

File details

Details for the file aiuna-0.2103.15-py3-none-any.whl.

File metadata

  • Download URL: aiuna-0.2103.15-py3-none-any.whl
  • Upload date:
  • Size: 104.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for aiuna-0.2103.15-py3-none-any.whl
Algorithm Hash digest
SHA256 e5a3523c1cf7edcc0349400f511ecb3bbf0ea7ef6a36ae39474c2af240e0d07c
MD5 47ef2898dc9ef1b62169a79b72bfc431
BLAKE2b-256 5042a7b4dac4df1d3f3b1836dd0e14263dcd9929c7424f3bd570ae895aa5d220

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page