Skip to main content

Science as data transformation

Project description

test codecov

aiuna scientific data for the classroom

WARNING: This project is still subject to major changes, e.g., in the next rewrite.

Bradypus variegatus - By Stefan Laube - (Dreizehenfaultier (Bradypus infuscatus), Gatunsee, Republik Panama), Public Domain

Installation

Examples

Creating data from ARFF file

from aiuna import *

d = file("iris.arff").data

print(d.Xd)
"""
['sepallength', 'sepalwidth', 'petallength', 'petalwidth']
"""
print(d.X[:5])
"""
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]]
"""
print(d.y[:5])
"""
['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa']
"""
from pandas import DataFrame
print(DataFrame(d.y).value_counts())
"""
Iris-setosa        50
Iris-versicolor    50
Iris-virginica     50
dtype: int64
"""

cessing a data field as a pandas DataFrame

#from aiuna import *

#d = dataset.data  # 'iris' is the default dataset
#df = d.X_pd
#print(df.head())
#...

#mycol = d.X_pd["petal length (cm)"]
#print(mycol[:5])
#...

Creating data from numpy arrays

from aiuna import *
import numpy as np

X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([0, 1, 1])
d = new(X=X, y=y)
print(d)
"""
{
    "uuid": "06NLDM4mLEMrHPOaJvEBqdo",
    "uuids": {
        "changed": "3Sc2JjUPMlnNtlq3qdx9Afy",
        "X": "13zbQMwRwU3WB8IjMGaXbtf",
        "Y": "1IkmDz3ATFmgzeYnzygvwDu"
    },
    "step": {
        "id": "06NLDM4mLEMrHPOT2pd5lzo",
        "desc": {
            "name": "New",
            "path": "aiuna.step.new",
            "config": {
                "hashes": {
                    "X": "586962852295d584ec08e7214393f8b2",
                    "Y": "f043eb8b1ab0a9618ad1dc53a00d759e"
                }
            }
        }
    },
    "changed": [
        "X",
        "Y"
    ],
    "X": [
        "[[1 2 3]",
        " [4 5 6]",
        " [7 8 9]]"
    ],
    "Y": [
        "[[0]",
        " [1]",
        " [1]]"
    ]
}
"""

Checking history

from aiuna import *

d = dataset.data  # 'iris' is the default dataset
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    }
}
"""
del d["X"]
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    }
}
"""
d["Z"] = 42
print(d.Z, type(d.Z))
"""
[[42]] <class 'numpy.ndarray'>
"""
print(d.history)
"""
{
    "02o8BsNH0fhOYFF6JqxwaLF": {
        "name": "New",
        "path": "aiuna.step.new",
        "config": {
            "hashes": {
                "X": "19b2d27779bc2d2444c11f5cc24c98ee",
                "Y": "8baa54c6c205d73f99bc1215b7d46c9c",
                "Xd": "0af9062dccbecaa0524ac71978aa79d3",
                "Yd": "04ceed329f7c3eb43f93efd981fde313",
                "Xt": "60d4f429fcd642bbaf1d976002479ea2",
                "Yt": "4660adc31e2c25d02cb751dcb96ecfd3"
            }
        }
    },
    "06fV1rbQVC1WfPelDNTxEPI": {
        "name": "Del",
        "path": "aiuna.step.delete",
        "config": {
            "field": "X"
        }
    },
    "05eIWbfCJS7vWJsXBXjoUAh": {
        "name": "Let",
        "path": "aiuna.step.let",
        "config": {
            "field": "Z",
            "value": 42
        }
    }
}
"""

Grants

Part of the effort spent in the present code was kindly supported by Fapesp under supervision of Prof. André C. P. L. F. de Carvalho at CEPID-CeMEAI (Grants 2013/07375-0 – 2019/01735-0).

History

The novel ideias presented here are a result of a years-long process of drafts, thinking, trial/error and rewrittings from scratch in several languages from Delphi, passing through Haskell, Java and Scala to Python - including frustration with well stablished libraries at the time. The fundamental concepts were lightly borrowed from basic category theory concepts like algebraic data structures that permeate many recent tendencies, e.g., in programming language design.

For more details, refer to https://github.com/davips/kururu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiuna-0.2102.10.tar.gz (77.3 kB view details)

Uploaded Source

Built Distribution

aiuna-0.2102.10-py3-none-any.whl (104.3 kB view details)

Uploaded Python 3

File details

Details for the file aiuna-0.2102.10.tar.gz.

File metadata

  • Download URL: aiuna-0.2102.10.tar.gz
  • Upload date:
  • Size: 77.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.1

File hashes

Hashes for aiuna-0.2102.10.tar.gz
Algorithm Hash digest
SHA256 31345fd4ef426ca1958a233ee2f5216586f9612fe063e040fdf41a76340ee30b
MD5 1e81f35410c734e196832c69a0ae72ad
BLAKE2b-256 599df433bfd2b5ccf286c5f9e30b089eca7fe640f4e03dd27fbe467cac226a16

See more details on using hashes here.

File details

Details for the file aiuna-0.2102.10-py3-none-any.whl.

File metadata

  • Download URL: aiuna-0.2102.10-py3-none-any.whl
  • Upload date:
  • Size: 104.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.1

File hashes

Hashes for aiuna-0.2102.10-py3-none-any.whl
Algorithm Hash digest
SHA256 86a6f4d4f33685667900518ed55a4263c5205be8692af19f361ea5755df863ff
MD5 123bb1de808edd6720a43072a1fe7d7b
BLAKE2b-256 6ef1549e0e95fff3ede87317be45c807353de851a73c28c43f3ca733551737a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page