Skip to main content

A simplistic and efficient pure-python neural network library that allows to build multilayer neural network with ease.

Project description

MultiLayer Neural Network (ak_pynn)

A simplistic and efficient pure-python neural network library, which can be used to build , visualize and deploy deep learning ANN models. It is optimized for best performance.

  • Optimized for performance
  • Better Visualization
  • Cross platform

Authors

License

MIT

Support

For support, email contact.ankitkohli@gmail.com

Features

  • Efficient implementations of activation functions and their gradients

    • Sigmoid
    • ReLU
    • Leaky ReLU
    • Softmax
    • Softplus
    • Tanh
    • Elu
    • Linear
  • Efficient implementations of loss functions and their gradients

    • Mean squared error
    • Mean absolute error
    • Binary cross entropy
    • Categorical cross entropy
  • Several methods for weights initialization

    • 'random uniform', 'random normal'
    • 'Glorot Uniform', 'Glorot Normal'
    • 'He Uniform','He Normal'
  • Neural network optimization using

    • Gradient Descent (Batch/ SGD / Mini-Batch)
    • Momentum
    • Adagrad
    • RMSprop
    • Adam
  • Regularizations

    • L1 Norm
    • L2 Norm
    • L1_L2 Norm
    • Dropouts
  • Batch Normalization

  • Early Stopping

  • Validation Splits

  • Predict Scores

Installation

Install the release (stable) version from PyPi

pip install ak-pynn

Usage/Examples

Import

from ak_pynn.mlp import MLP

Usage

model = MLP()
model.add_layer(4,input_layer=True)
model.add_layer(10,activation_function='relu',batch_norm=True)
model.add_layer(10,activation_function='relu',dropouts=True)
model.add_layer(10,activation_function='relu')
model.add_layer(3,activation_function='softmax',output_layer=True)
model.compile_model(optimizer='Adam',loss_function='mse',metrics=['mse','accuracy'])

Output


                                ( MODEL SUMMARY )                        
        
        ===================================================================
               Layer           Activation    Output Shape      Params    
        ===================================================================

               Input             linear       (None, 4)          0       
        -------------------------------------------------------------------

               Dense              relu        (None, 10)         50      
        -------------------------------------------------------------------

         BatchNormalization       None        (None, 10)         40      
        -------------------------------------------------------------------

               Dense              relu        (None, 10)        110      
        -------------------------------------------------------------------

              Dropout             None        (None, 10)         0       
        -------------------------------------------------------------------

               Dense              relu        (None, 10)        110      
        -------------------------------------------------------------------

               Output           softmax       (None, 3)          33      
        -------------------------------------------------------------------

        ===================================================================

        Total Params  - 343
        Trainable Params  - 323
        Non-Trainable Params  - 20
        ___________________________________________________________________
              

Visualizing model

model.visualize()

App Screenshot

Training the model

model.fit(X_train, Y_train,epochs=200,batch_size=32,verbose=False,early_stopping=False,patience=3,validation_split=0.2)
model.predict_scores(X_test,Y_test,metrics=['accuracy','precision','macro_recall'])
plt.plot(model.history['Val_Losses'])
plt.plot(model.history['Losses'])

TESTS

@mnist_test

@iris_test

@mlp_demo

Citation

If you use this library and would like to cite it, you can use:

Ankit kohli, "ak-pynn: Neural Network libray", 2023. [Online]. Available: https://github.com/ankit869/ak-pynn. [Accessed: DD- Month- 20YY].

or:

@Misc{,
  author = {Ankit kohli},
  title  = {ak-pynn: Neural Network libray},
  month  = May,
  year   = {2023},
  note   = {Online; accessed <today>},
  url    = {https://github.com/ankit869/ak-pynn},
}

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page