Skip to main content

Implementation of event-based models for degenerative diseases.

Project description

EBM

This is the python package for implementing EBM.

Usage

To generate random data:

S_ordering = np.array([
        'HIP-FCI', 'PCC-FCI', 'AB', 'P-Tau', 'MMSE', 'ADAS', 
        'HIP-GMI', 'AVLT-Sum', 'FUS-GMI', 'FUS-FCI'
    ])

real_theta_phi_file = '../alabEBM/data/real_theta_phi.json'

js = [50, 100]
rs = [0.1, 0.5]
num_of_datasets_per_combination = 20

generate(
    S_ordering,
    real_theta_phi_file,
    js,
    rs,
    num_of_datasets_per_combination,
    output_dir = 'data'
)

To get results:

data_file = '../alabEBM/data/25|50_10.csv'
n_iter = 20
n_shuffle = 2
burn_in = 2
thinning = 2
heatmap_folder = 'heatmap'
filename = '25_50_10_hk'
temp_result_file = f'results/{filename}.json'

run_hard_kmeans(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

filename = '25_50_10_sk'
temp_result_file = f'results/{filename}.json'
run_soft_kmeans(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

filename = '25_50_10_cp'
temp_result_file = f'results/{filename}.json'
run_conjugate_priors(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alabEBM-0.0.1.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

alabEBM-0.0.1-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file alabEBM-0.0.1.tar.gz.

File metadata

  • Download URL: alabEBM-0.0.1.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.19

File hashes

Hashes for alabEBM-0.0.1.tar.gz
Algorithm Hash digest
SHA256 cea002435bb1e4bef959ab5386d73fdce077c7f6abffc245d64512966be7c6f5
MD5 82c6dc0d1cc2f0bcb9933124da900b50
BLAKE2b-256 d0aeba7ad9e45ad1a53e5e6c70282870e44486ca608076b4b9496ebfb6788279

See more details on using hashes here.

File details

Details for the file alabEBM-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: alabEBM-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.19

File hashes

Hashes for alabEBM-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 45f2ef954d44b54178d8b9a3d13e317f7bd7d9be67707c3d902ebd3fbcc8b147
MD5 a066570011578e4eb079bf571b5e74d5
BLAKE2b-256 099c289a92e606b433fa5b6c9a0fe544c7bb0a6c2110890e10d7d2c2910e67fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page