Skip to main content

Implementation of event-based models for degenerative diseases.

Project description

EBM

This is the python package for implementing EBM.

pip install alabEBM

Usage

To generate random data:

from alabEBM import generate
import numpy as np 
S_ordering = np.array([
        'HIP-FCI', 'PCC-FCI', 'AB', 'P-Tau', 'MMSE', 'ADAS', 
        'HIP-GMI', 'AVLT-Sum', 'FUS-GMI', 'FUS-FCI'
    ])

real_theta_phi_file = '../alabEBM/data/real_theta_phi.json'

js = [50, 100]
rs = [0.1, 0.5]
num_of_datasets_per_combination = 20

generate(
    S_ordering,
    real_theta_phi_file,
    js,
    rs,
    num_of_datasets_per_combination,
    output_dir = 'data'
)

To get results:

from alabEBM import run_hard_kmeans
from alabEBM import run_soft_kmeans
from alabEBM import run_conjugate_priors

data_file = '../alabEBM/data/25|50_10.csv'
n_iter = 20
n_shuffle = 2
burn_in = 2
thinning = 2
heatmap_folder = 'heatmap'
filename = '25_50_10_hk'
temp_result_file = f'results/{filename}.json'

run_hard_kmeans(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

filename = '25_50_10_sk'
temp_result_file = f'results/{filename}.json'
run_soft_kmeans(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

filename = '25_50_10_cp'
temp_result_file = f'results/{filename}.json'
run_conjugate_priors(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alabEBM-0.0.2.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

alabEBM-0.0.2-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file alabEBM-0.0.2.tar.gz.

File metadata

  • Download URL: alabEBM-0.0.2.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.5

File hashes

Hashes for alabEBM-0.0.2.tar.gz
Algorithm Hash digest
SHA256 6d1006cfe9ed9cd0d2c01f68c41e15db96e55915b3c78d309c808cfba3ff4949
MD5 6d3b6a916a818bf7f38c6d891e6a8bf9
BLAKE2b-256 2322752f116cfa990ba46d8d9cbbf737aef79d42252f9021bba0888398b822a6

See more details on using hashes here.

File details

Details for the file alabEBM-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: alabEBM-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.5

File hashes

Hashes for alabEBM-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7a3a78d07226908518a3af19d89bded44a9863e80de29e2971c417544b0245ab
MD5 38ecb4f8cf5490564da285e0e191ac0e
BLAKE2b-256 b765874165d76bf11b2405c6a72d88dbda10d8c44a29fa85d8a0b4a8696aba3f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page