Skip to main content

Implementation of event-based models for degenerative diseases.

Project description

EBM

This is the python package for implementing EBM.

pip install alabEBM

Usage

To generate random data:

from alabEBM import generate
import numpy as np 
S_ordering = np.array([
        'HIP-FCI', 'PCC-FCI', 'AB', 'P-Tau', 'MMSE', 'ADAS', 
        'HIP-GMI', 'AVLT-Sum', 'FUS-GMI', 'FUS-FCI'
    ])

real_theta_phi_file = '../alabEBM/data/real_theta_phi.json'

js = [50, 100]
rs = [0.1, 0.5]
num_of_datasets_per_combination = 20

generate(
    S_ordering,
    real_theta_phi_file,
    js,
    rs,
    num_of_datasets_per_combination,
    output_dir = 'data'
)

To get results:

from alabEBM import run_hard_kmeans
from alabEBM import run_soft_kmeans
from alabEBM import run_conjugate_priors

data_file = '../alabEBM/data/25|50_10.csv'
n_iter = 20
n_shuffle = 2
burn_in = 2
thinning = 2
heatmap_folder = 'heatmap'
filename = '25_50_10_hk'
temp_result_file = f'results/{filename}.json'

run_hard_kmeans(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

filename = '25_50_10_sk'
temp_result_file = f'results/{filename}.json'
run_soft_kmeans(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

filename = '25_50_10_cp'
temp_result_file = f'results/{filename}.json'
run_conjugate_priors(
    data_file,
    n_iter,
    n_shuffle,
    burn_in,
    thinning,
    heatmap_folder,
    filename,
    temp_result_file,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alabEBM-0.0.5.tar.gz (15.1 kB view details)

Uploaded Source

Built Distribution

alabEBM-0.0.5-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file alabEBM-0.0.5.tar.gz.

File metadata

  • Download URL: alabEBM-0.0.5.tar.gz
  • Upload date:
  • Size: 15.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.5

File hashes

Hashes for alabEBM-0.0.5.tar.gz
Algorithm Hash digest
SHA256 24d36f74a86258d2248333ade13f009ef76c64982927c9e7e9f492a6b64fd94b
MD5 caae6289609e3c304e934e1f334520da
BLAKE2b-256 a044e177508a0d2680268674fcef68fef4a85087d3fbd7d7add53c176ba43477

See more details on using hashes here.

File details

Details for the file alabEBM-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: alabEBM-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.5

File hashes

Hashes for alabEBM-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 0468fbe4c714715702b875972fd6cb9780dafe6fdafedcea8becb3a887c690cb
MD5 9d41736633a9071a0018ccb056daf033
BLAKE2b-256 5ed5dc1641558f0b76f29d7e83a3e37aaddebfe1f040f16d5ad87a6856fc5bc0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page