Skip to main content

Distributed Task Queue

Project description

http://cloud.github.com/downloads/celery/celery/celery_128.png
Version:

3.1.25 (Cipater)

Web:

http://celeryproject.org/

Download:

http://pypi.python.org/pypi/celery/

Source:

http://github.com/celery/celery/

Keywords:

task queue, job queue, asynchronous, async, rabbitmq, amqp, redis, python, webhooks, queue, distributed

What is a Task Queue?

Task queues are used as a mechanism to distribute work across threads or machines.

A task queue’s input is a unit of work, called a task, dedicated worker processes then constantly monitor the queue for new work to perform.

Celery communicates via messages, usually using a broker to mediate between clients and workers. To initiate a task a client puts a message on the queue, the broker then delivers the message to a worker.

A Celery system can consist of multiple workers and brokers, giving way to high availability and horizontal scaling.

Celery is a library written in Python, but the protocol can be implemented in any language. So far there’s RCelery for the Ruby programming language, and a PHP client, but language interoperability can also be achieved by using webhooks.

What do I need?

Celery version 3.0 runs on,

  • Python (2.5, 2.6, 2.7, 3.2, 3.3)

  • PyPy (1.8, 1.9)

  • Jython (2.5, 2.7).

This is the last version to support Python 2.5, and from Celery 3.1, Python 2.6 or later is required. The last version to support Python 2.4 was Celery series 2.2.

Celery is usually used with a message broker to send and receive messages. The RabbitMQ, Redis transports are feature complete, but there’s also experimental support for a myriad of other solutions, including using SQLite for local development.

Celery can run on a single machine, on multiple machines, or even across datacenters.

Get Started

If this is the first time you’re trying to use Celery, or you are new to Celery 3.0 coming from previous versions then you should read our getting started tutorials:

Celery is…

  • Simple

    Celery is easy to use and maintain, and does not need configuration files.

    It has an active, friendly community you can talk to for support, including a mailing-list and and an IRC channel.

    Here’s one of the simplest applications you can make:

    from celery import Celery
    
    app = Celery('hello', broker='amqp://guest@localhost//')
    
    @app.task
    def hello():
        return 'hello world'
  • Highly Available

    Workers and clients will automatically retry in the event of connection loss or failure, and some brokers support HA in way of Master/Master or Master/Slave replication.

  • Fast

    A single Celery process can process millions of tasks a minute, with sub-millisecond round-trip latency (using RabbitMQ, py-librabbitmq, and optimized settings).

  • Flexible

    Almost every part of Celery can be extended or used on its own, Custom pool implementations, serializers, compression schemes, logging, schedulers, consumers, producers, autoscalers, broker transports and much more.

It supports…

  • Message Transports

  • Concurrency

  • Result Stores

    • AMQP, Redis

    • memcached, MongoDB

    • SQLAlchemy, Django ORM

    • Apache Cassandra, IronCache

  • Serialization

    • pickle, json, yaml, msgpack.

    • zlib, bzip2 compression.

    • Cryptographic message signing.

Framework Integration

Celery is easy to integrate with web frameworks, some of which even have integration packages:

Django

not needed

Pyramid

pyramid_celery

Pylons

celery-pylons

Flask

not needed

web2py

web2py-celery

Tornado

tornado-celery

The integration packages are not strictly necessary, but they can make development easier, and sometimes they add important hooks like closing database connections at fork.

Documentation

The latest documentation with user guides, tutorials and API reference is hosted at Read The Docs.

Installation

You can install Celery either via the Python Package Index (PyPI) or from source.

To install using pip,:

$ pip install -U Celery

To install using easy_install,:

$ easy_install -U Celery

Bundles

Celery also defines a group of bundles that can be used to install Celery and the dependencies for a given feature.

You can specify these in your requirements or on the pip comand-line by using brackets. Multiple bundles can be specified by separating them by commas.

$ pip install "celery[librabbitmq]"

$ pip install "celery[librabbitmq,redis,auth,msgpack]"

The following bundles are available:

Serializers

celery[auth]:

for using the auth serializer.

celery[msgpack]:

for using the msgpack serializer.

celery[yaml]:

for using the yaml serializer.

Concurrency

celery[eventlet]:

for using the eventlet pool.

celery[gevent]:

for using the gevent pool.

celery[threads]:

for using the thread pool.

Transports and Backends

celery[librabbitmq]:

for using the librabbitmq C library.

celery[redis]:

for using Redis as a message transport or as a result backend.

celery[mongodb]:

for using MongoDB as a message transport (experimental), or as a result backend (supported).

celery[sqs]:

for using Amazon SQS as a message transport (experimental).

celery[memcache]:

for using memcached as a result backend.

celery[cassandra]:

for using Apache Cassandra as a result backend.

celery[couchdb]:

for using CouchDB as a message transport (experimental).

celery[couchbase]:

for using CouchBase as a result backend.

celery[beanstalk]:

for using Beanstalk as a message transport (experimental).

celery[zookeeper]:

for using Zookeeper as a message transport.

celery[zeromq]:

for using ZeroMQ as a message transport (experimental).

celery[sqlalchemy]:

for using SQLAlchemy as a message transport (experimental), or as a result backend (supported).

celery[pyro]:

for using the Pyro4 message transport (experimental).

celery[slmq]:

for using the SoftLayer Message Queue transport (experimental).

Downloading and installing from source

Download the latest version of Celery from http://pypi.python.org/pypi/celery/

You can install it by doing the following,:

$ tar xvfz celery-0.0.0.tar.gz
$ cd celery-0.0.0
$ python setup.py build
# python setup.py install

The last command must be executed as a privileged user if you are not currently using a virtualenv.

Using the development version

With pip

The Celery development version also requires the development versions of kombu, amqp and billiard.

You can install the latest snapshot of these using the following pip commands:

$ pip install https://github.com/celery/celery/zipball/master#egg=celery
$ pip install https://github.com/celery/billiard/zipball/master#egg=billiard
$ pip install https://github.com/celery/py-amqp/zipball/master#egg=amqp
$ pip install https://github.com/celery/kombu/zipball/master#egg=kombu

With git

Please the Contributing section.

Getting Help

Mailing list

For discussions about the usage, development, and future of celery, please join the celery-users mailing list.

IRC

Come chat with us on IRC. The #celery channel is located at the Freenode network.

Bug tracker

If you have any suggestions, bug reports or annoyances please report them to our issue tracker at http://github.com/celery/celery/issues/

Wiki

http://wiki.github.com/celery/celery/

Contributing

Development of celery happens at Github: http://github.com/celery/celery

You are highly encouraged to participate in the development of celery. If you don’t like Github (for some reason) you’re welcome to send regular patches.

Be sure to also read the Contributing to Celery section in the documentation.

License

This software is licensed under the New BSD License. See the LICENSE file in the top distribution directory for the full license text.

Bitdeli badge

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alauda-celery-3.1.25rc1.tar.gz (1.3 MB view details)

Uploaded Source

File details

Details for the file alauda-celery-3.1.25rc1.tar.gz.

File metadata

File hashes

Hashes for alauda-celery-3.1.25rc1.tar.gz
Algorithm Hash digest
SHA256 19616ee1e5c7c4797303ac6f49aec234a4660a2b644b4ba1d5c050cfd0c91a5c
MD5 c4714bc29ab9ed19276cdbe7c6a55561
BLAKE2b-256 a99b18d51563bab832958a7efff72e8b0b0fbdcdd0540079ba1b4f60f2e76ff7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page