Skip to main content

A Python package for generating SQLAlchemy ORM code from an existing database

Project description

Alchemical Clone

Alchemical Clone is a Python tool designed to generate SQLAlchemy ORM code from existing databases. It automates the creation of Python ORM models by reflecting on your database's schema, making it ideal for kickstarting projects or documenting existing databases. It supports relationship inference, including many-to-many associations, and offers customizable naming conventions to align with your project's coding standards, as well as a simple plugin system.

Features

  • Automatic ORM Code Generation: Generate complete SQLAlchemy model code from your database schema.
  • Relationship Inference: Automatically detects and generates relationships, including many-to-many associations.

Installation

For now, instalation can only be done by cloning this git repository.

Example Usage

The most basic way of running Alchemical Clone would be to import it and use it against a instance of an sqlalchemy.MetaData object:

import alchemical_clone
import sqlalchemy

# Create a connection to the database
engine_url = alchemical_clone.utils.get_engine_url(
    dialect="mysql", 
    username="some_username", 
    password="some_password", 
    host="some_host", 
    port=3306
)
engine = sqlalchemy.create_engine(engine_url)

# Create a metadata object and reflect the database
metadata = sqlalchemy.MetaData()
metadata.reflect(bind=engine, schema="some_schema")

lab = alchemical_clone.AlchemicalLab(metadata)
lab.create_clone("clone")

Assuming this is the users table on your database, where the tables languages and user_groups also exist:

Field Type Null Key Default Extra
id int(10) unsigned NO PRI NULL auto_increment
email varchar(45) NO UNI NULL
name varchar(45) YES NULL
birthday datetime YES NULL
userGroupId int(10) unsigned YES MUL NULL
langId int(10) unsigned NO MUL 1

The directory clone will be created, with the following files:

  • __init__.py - A python file to mark this directory as a package
  • _base.py - This file is used to define the SQL Alchemy declarative base
  • users.py, languages.py, user_groups.py - one file for each table, with their definitions

The contents of the users.py file, for example, should be:

from sqlalchemy import Column, DateTime, ForeignKeyConstraint, Index, Integer, PrimaryKeyConstraint, String
from sqlalchemy.orm import relationship

from ._base import Base


class Users(Base):
    __tablename__ = "users"
    __table_args__ = (
        PrimaryKeyConstraint("id"),
        ForeignKeyConstraint(["langId"], ["some_schema.languages.id"], name="fk_user_lang_id", onupdate="CASCADE"),
        ForeignKeyConstraint(["countryId"], ["some_schema.countries.id"], name="fk_user_country_id", onupdate="CASCADE"),
        ForeignKeyConstraint(["userGroupId"], ["some_schema.user_groups.id"], name="fk_user_group_id", onupdate="CASCADE"),
        {
            "schema": "some_schema",
        },
    )

    id = Column("id", Integer(), nullable=False)
    email = Column("email", String(length=45), nullable=False)
    name = Column("name", String(length=45), nullable=True)
    birthday = Column("birthday", DateTime(), nullable=True)
    userGroupId = Column("userGroupId", Integer(), nullable=True)
    langId = Column("langId", Integer(), nullable=False, server_default="'1'")

    fk_user_lang_id = relationship("Languages", foreign_keys=[langId])
    fk_user_country_id = relationship("Countries", foreign_keys=[countryId])
    fk_user_group_id = relationship("UserGroups", foreign_keys=[userGroupId])

Index("fk_user_lang_id_idx", Users.langId, unique=False)
Index("id_UNIQUE", Users.id, unique=True)
Index("email_UNIQUE", Users.email, unique=True)
Index("fk_user_group_id_idx", Users.userGroupId, unique=False)

Plugins

There are currently two plugins available for Alchemical Clone - one_to_many and many_to_many. Both of them discover and add relationships of the stated type to the tables' class definitions. They can be used when calling create_clone:

lab.create_clone("clone", plugins=[
    alchemical_clone.plugins.one_to_many,
    alchemical_clone.plugins.many_to_many,
])

One to many

To illustrate the effect of the one_to_many plugin, let's consider the tables users and orders, where the orders table has a foreign key to users, so each user can have multiple orders. If the plugin is used, the lines marked with ! will be added:

...

class Orders(Base):
    __tablename__ = "orders"
    __table_args__ = (
        PrimaryKeyConstraint("id", name="orders_pk"),
        ForeignKeyConstraint(["user_id"], ["users.id"], name="user_orders_fk"),
    )

    id = Column("id", Integer(), nullable=False)
    user_id = Column("user_id", Integer(), nullable=False)

    user_orders_fk = relationship("Users", foreign_keys=[user_id])

...

class Users(Base):
    __tablename__ = "users"
    __table_args__ = (
        PrimaryKeyConstraint("id", name="users_pk"),
    )

    id = Column("id", Integer(), nullable=False)

    users_to_orders = relationship("Orders", back_populates="user_orders_fk", viewonly=True)  # !

...

With this, Users.users_to_orders will contain a list of orders where user_id matches the Users object's id.

Many to many

The many_to_many plugin functions in a similar way. Let's say that, instead of orders, we have liked products. Now, it makes sense that a user might like multiple products and that a product may be liked by multiple users. We could represent this relationship using an intermediate table, "user_liked_product", resulting in the following:

...

class Products(Base):
    __tablename__ = "products"
    __table_args__ = (
        PrimaryKeyConstraint("id", name="products_pk"),
    )

    id = Column("id", Integer(), nullable=False)

    users_through_user_liked_product = relationship("User", secondary=UserLikedProduct.__table__, back_populates="products_through_user_liked_product", viewonly=True)  # !

...

class Users(Base):
    __tablename__ = "users"
    __table_args__ = (
        PrimaryKeyConstraint("id", name="users_pk"),
    )

    id = Column("id", Integer(), nullable=False)

    products_through_user_liked_product = relationship("Products", secondary=UserLikedProduct.__table__, back_populates="users_through_user_liked_product", viewonly=True)  # !

...

class UserLikedProduct(Base):
    __tablename__ = "user_liked_product"
    __table_args__ = (
        PrimaryKeyConstraint("id", name="users_pk"),
        ForeignKeyConstraint(["user_id"], ["users.id"], name="user_fk"),
        ForeignKeyConstraint(["product_id"], ["products.id"], name="product_fk"),
    )

    id = Column("id", Integer(), nullable=False)
    user_id = Column("user_id", Integer(), nullable=False)
    product_id = Column("product_id", Integer(), nullable=False)

    user_fk = relationship("Users", foreign_keys=[user_id])
    product_fk = relationship("Products", foreign_keys=[product_id])

...

With this, Users.products_through_user_liked_product will be a list of all the products the user liked, and Products.users_through_user_liked_product will be a list of all the users that liked a product.

Progress

  • Simple ORM generation
  • Database-specific optimizations
  • Plugin support
  • Naming maps / configuration files
  • Tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alchemical_clone-0.0.2.tar.gz (13.0 kB view details)

Uploaded Source

Built Distribution

alchemical_clone-0.0.2-py3-none-any.whl (14.5 kB view details)

Uploaded Python 3

File details

Details for the file alchemical_clone-0.0.2.tar.gz.

File metadata

  • Download URL: alchemical_clone-0.0.2.tar.gz
  • Upload date:
  • Size: 13.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for alchemical_clone-0.0.2.tar.gz
Algorithm Hash digest
SHA256 136ea4159c35152b04caabb7051dbfca599273aeda3ee80a2146b0a45ee27581
MD5 25c2822911b6db6792e8fb3d6e142a24
BLAKE2b-256 8a773c472f7a19f6e0bb71f7208039a1ec207ad3bbb953558f600725613f1ae0

See more details on using hashes here.

File details

Details for the file alchemical_clone-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for alchemical_clone-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2a49716bca3c380b031df538c4f3814de78dd6548693eaae45afa494ed08e3eb
MD5 25eab11bcbdadaca0cad681497c53c5a
BLAKE2b-256 05321c6edd9a847b7936ed857fd77b9f97efbd8270f4ec8a7fe7dcf95f4e8a13

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page