Skip to main content

SQLAlchemy mock helpers.

Project description

https://badge.fury.io/py/alchemy-mock.png https://travis-ci.org/miki725/alchemy-mock.png?branch=master https://coveralls.io/repos/miki725/alchemy-mock/badge.png?branch=master

SQLAlchemy mock helpers.

Installing

You can install alchemy-mock using pip:

$ pip install alchemy-mock

Why?

SQLAlchemy is awesome. Unittests are great. Accessing DB during tests - not so much. This library provides easy way to mock SQLAlchemy’s session in unittests while preserving ability to do sane asserts. Normally SQLAlchemy’s expressions cannot be easily compared as comparison on binary expression produces yet another binary expression:

>>> type((Model.foo == 5) == (Model.bar == 5))
<class 'sqlalchemy.sql.elements.BinaryExpression'>

But they can be compared with this library:

>>> ExpressionMatcher(Model.foo == 5) == (Model.bar == 5)
False

Using

ExpressionMatcher can be directly used:

>>> from alchemy_mock.comparison import ExpressionMatcher
>>> ExpressionMatcher(Model.foo == 5) == (Model.foo == 5)
True

Alternatively AlchemyMagicMock can be used to mock out SQLAlchemy session:

>>> from alchemy_mock.mocking import AlchemyMagicMock
>>> session = AlchemyMagicMock()
>>> session.query(Model).filter(Model.foo == 5).all()

>>> session.query.return_value.filter.assert_called_once_with(Model.foo == 5)

In real world though session can be interacted with multiple times to query some data. In those cases UnifiedAlchemyMagicMock can be used which combines various calls for easier assertions:

>>> from alchemy_mock.mocking import UnifiedAlchemyMagicMock
>>> session = UnifiedAlchemyMagicMock()

>>> m = session.query(Model)
>>> q = m.filter(Model.foo == 5)
>>> if condition:
...     q = q.filter(Model.bar > 10).all()
>>> data1 = q.all()
>>> data2 = m.filter(Model.note == 'hello world').all()

>>> session.filter.assert_has_calls([
...     mock.call(Model.foo == 5, Model.bar > 10),
...     mock.call(Model.note == 'hello world'),
... ])

Also real-data can be stubbed by criteria:

>>> from alchemy_mock.mocking import UnifiedAlchemyMagicMock
>>> session = UnifiedAlchemyMagicMock(data=[
...     (
...         [mock.call.query(Model),
...          mock.call.filter(Model.foo == 5, Model.bar > 10)],
...         [Model(foo=5, bar=11)]
...     ),
...     (
...         [mock.call.query(Model),
...          mock.call.filter(Model.note == 'hello world')],
...         [Model(note='hello world')]
...     ),
...     (
...         [mock.call.query(AnotherModel),
...          mock.call.filter(Model.foo == 5, Model.bar > 10)],
...         [AnotherModel(foo=5, bar=17)]
...     ),
... ])
>>> session.query(Model).filter(Model.foo == 5).filter(Model.bar > 10).all()
[Model(foo=5, bar=11)]
>>> session.query(Model).filter(Model.note == 'hello world').all()
[Model(note='hello world')]
>>> session.query(AnotherModel).filter(Model.foo == 5).filter(Model.bar > 10).all()
[AnotherModel(foo=5, bar=17)]
>>> session.query(AnotherModel).filter(Model.note == 'hello world').all()
[]

Finally UnifiedAlchemyMagicMock can partially fake session mutations such as session.add(instance). For example:

>>> session = UnifiedAlchemyMagicMock()
>>> session.add(Model(pk=1, foo='bar'))
>>> session.add(Model(pk=2, foo='baz'))
>>> session.query(Model).all()
[Model(foo='bar'), Model(foo='baz')]
>>> session.query(Model).get(1)
Model(foo='bar')
>>> session.query(Model).get(2)
Model(foo='baz')

Note that its partially correct since if added models are filtered on, session is unable to actually apply any filters so it returns everything:

>>> session.query(Model).filter(Model.foo == 'bar').all()
[Model(foo='bar'), Model(foo='baz')]

History

0.4.3 (2019-11-05)

  • Unifying distinct.

0.4.2 (2019-09-25)

  • Adding support label() in ExpressionMatcher. For example column.label('foo').

0.4.1 (2019-06-26)

  • Adding support for one_or_none(). Thanks @davidroeca

0.4.0 (2019-06-06)

  • Adding basic mutation capability with add and add_all.

0.3.5 (2019-04-13)

  • Fixing compatibility with latest mock.

0.3.4 (2018-10-03)

  • Unifying limit.

0.3.3 (2018-09-17)

  • Unifying options and group_by.

0.3.2 (2018-06-27)

  • Added support for count() and get() between boundaries.

0.3.1 (2018-03-28)

  • Added support for func calls in ExpressionMatcher. For example func.lower(column).

0.3.0 (2018-01-24)

  • Added support for .one() and .first() methods when stubbing data.

  • Fixed bug which incorrectly unified methods after iterating on mock.

0.2.0 (2018-01-13)

  • Added ability to stub real-data by filtering criteria. See #2.

0.1.1 (2018-01-12)

  • Fixed alembic typo in README. oops.

0.1.0 (2018-01-12)

  • First release on PyPI.

Credits

Development Lead

Contributors

License

The MIT License (MIT)

Copyright (c) 2018, Miroslav Shubernetskiy

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alchemy-mock-0.4.3.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

alchemy_mock-0.4.3-py2.py3-none-any.whl (13.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file alchemy-mock-0.4.3.tar.gz.

File metadata

  • Download URL: alchemy-mock-0.4.3.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.8.0

File hashes

Hashes for alchemy-mock-0.4.3.tar.gz
Algorithm Hash digest
SHA256 7914c3f56aa7dd793d31a5ea3816972ff57de6e3c82651febfaab135e8f39d7a
MD5 c19252e5d43e2b19942893e36789ba26
BLAKE2b-256 b62641bd026d187020e2a16dbc9875b3f56b98c4d9732c6942f44e210535158b

See more details on using hashes here.

File details

Details for the file alchemy_mock-0.4.3-py2.py3-none-any.whl.

File metadata

  • Download URL: alchemy_mock-0.4.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 13.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.8.0

File hashes

Hashes for alchemy_mock-0.4.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e076b11cdef76638f4de70d50f0d8cb851d69c41346d984371f757c8fb4a0efa
MD5 f9b245ddd7b45dcc08ce20f5a2a2ddc0
BLAKE2b-256 16e465807a46797083ec0b9971c7ed0459bd5b3b006d2c15d0d1737fc4364d22

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page