Skip to main content

The Arcade Learning Environment (ALE) - a platform for AI research.

Project description

The Arcade Learning Environment Arcade Learning Environment

Python PyPI Version

The Arcade Learning Environment (ALE) is a simple framework that allows researchers and hobbyists to develop AI agents for Atari 2600 games. It is built on top of the Atari 2600 emulator Stella and separates the details of emulation from agent design. This video depicts over 50 games currently supported in the ALE.

For an overview of our goals for the ALE read The Arcade Learning Environment: An Evaluation Platform for General Agents. If you use ALE in your research, we ask that you please cite this paper in reference to the environment. See the Citing section for BibTeX entries.

Features

  • Object-oriented framework with support to add agents and games.
  • Emulation core uncoupled from rendering and sound generation modules for fast emulation with minimal library dependencies.
  • Automatic extraction of game score and end-of-game signal for more than 100 Atari 2600 games.
  • Multi-platform code (compiled and tested under macOS, Windows, and several Linux distributions).
  • Python bindings through pybind11.
  • Native support for Gymnasium, a maintained fork of OpenAI Gym.
  • Visualization tools.
  • Atari roms are packaged within the pip package

Quick Start

The ALE currently supports three different interfaces: C++, Python, and Gymnasium.

Python

You simply need to install the ale-py package distributed via PyPI:

pip install ale-py

Note: Make sure you're using an up-to-date version of pip or the installation may fail.

You can now import the ALE in your Python projects with providing a direct interface to Stella for interacting with games

from ale_py import ALEInterface, roms

ale = ALEInterface()
ale.loadROM(roms.get_rom_path("Breakout"))
ale.reset_game()

reward = ale.act(0)  # noop
screen_obs = ale.getScreenRGB()

Gymnasium

For simplicity for installing ale-py with Gymnasium, pip install "gymnasium[atari]" shall install all necessary modules and ROMs. See Gymnasium introductory page for description of the API to interface with the environment.

import gymnasium as gym
import ale_py

gym.register_envs(ale_py)  # unnecessary but helpful for IDEs

env = gym.make('ALE/Breakout-v5', render_mode="human")  # remove render_mode in training
obs, info = env.reset()
episode_over = False
while not episode_over:
    action = policy(obs)  # to implement - use `env.action_space.sample()` for a random policy
    obs, reward, terminated, truncated, info = env.step(action)

    episode_over = terminated or truncated
env.close()

For all the environments available and their description, see gymnasium atari page.

C++

The following instructions will assume you have a valid C++17 compiler and vcpkg installed.

We use CMake as a first class citizen, and you can use the ALE directly with any CMake project. To compile and install the ALE you can run

mkdir build && cd build
cmake ../ -DCMAKE_BUILD_TYPE=Release
cmake --build . --target install

There are optional flags -DSDL_SUPPORT=ON/OFF to toggle SDL support (i.e., display_screen and sound support; OFF by default), -DBUILD_CPP_LIB=ON/OFF to build the ale-lib C++ target (ON by default), and -DBUILD_PYTHON_LIB=ON/OFF to build the pybind11 wrapper (ON by default).

Finally, you can link agaisnt the ALE in your own CMake project as follows

find_package(ale REQUIRED)
target_link_libraries(YourTarget ale::ale-lib)

Citing

If you use the ALE in your research, we ask that you please cite the following.

M. G. Bellemare, Y. Naddaf, J. Veness and M. Bowling. The Arcade Learning Environment: An Evaluation Platform for General Agents, Journal of Artificial Intelligence Research, Volume 47, pages 253-279, 2013.

In BibTeX format:

@Article{bellemare13arcade,
    author = {{Bellemare}, M.~G. and {Naddaf}, Y. and {Veness}, J. and {Bowling}, M.},
    title = {The Arcade Learning Environment: An Evaluation Platform for General Agents},
    journal = {Journal of Artificial Intelligence Research},
    year = "2013",
    month = "jun",
    volume = "47",
    pages = "253--279",
}

If you use the ALE with sticky actions (flag repeat_action_probability), or if you use the different game flavours (mode and difficulty switches), we ask you that you also cite the following:

M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J. Hausknecht, M. Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents, Journal of Artificial Intelligence Research, Volume 61, pages 523-562, 2018.

In BibTex format:

@Article{machado18arcade,
    author = {Marlos C. Machado and Marc G. Bellemare and Erik Talvitie and Joel Veness and Matthew J. Hausknecht and Michael Bowling},
    title = {Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents},
    journal = {Journal of Artificial Intelligence Research},
    volume = {61},
    pages = {523--562},
    year = {2018}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ale_py-0.10.1.tar.gz (483.2 kB view details)

Uploaded Source

Built Distributions

ale_py-0.10.1-cp313-cp313-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.13 Windows x86-64

ale_py-0.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

ale_py-0.10.1-cp313-cp313-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

ale_py-0.10.1-cp313-cp313-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.13 macOS 10.15+ x86-64

ale_py-0.10.1-cp312-cp312-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

ale_py-0.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ale_py-0.10.1-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ale_py-0.10.1-cp312-cp312-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

ale_py-0.10.1-cp311-cp311-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

ale_py-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ale_py-0.10.1-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ale_py-0.10.1-cp311-cp311-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ale_py-0.10.1-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

ale_py-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ale_py-0.10.1-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ale_py-0.10.1-cp310-cp310-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ale_py-0.10.1-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

ale_py-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ale_py-0.10.1-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ale_py-0.10.1-cp39-cp39-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

ale_py-0.10.1-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

ale_py-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ale_py-0.10.1-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

ale_py-0.10.1-cp38-cp38-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file ale_py-0.10.1.tar.gz.

File metadata

  • Download URL: ale_py-0.10.1.tar.gz
  • Upload date:
  • Size: 483.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ale_py-0.10.1.tar.gz
Algorithm Hash digest
SHA256 3971a8552d2f982f569c87152479901574a9fe86410e5d1a26276e7ffccb59e1
MD5 b2f67de77367197b09a371df0b34dea7
BLAKE2b-256 e9fff32cc7aef57955a9d756bd34f8e7e736b60b8359db2928f9dad7e94fdfdc

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.10.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ale_py-0.10.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 9f30d763c38063e5579783844868c1330f89049f252e94c49534785515f785f2
MD5 54cdc245537a5b6c2dd0b790ef216ae3
BLAKE2b-256 fe6ad41757c995a856eb4ab29ae6c4fc7d0b8d21e719edc0bd10a5634bcb38e8

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92a31bd44687c6a3595fcdac35bc3238e305dd604171ba6a9cb7912bc83c99ee
MD5 88a0aa3b4c09f234a715c9d72afd7c75
BLAKE2b-256 b0a6f05688bed7fd7d64611a8c72225212dd971e32d39ac9e1c299bf3d4e85c2

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0835ee11004efeb5a9805a09c1525242f737257a8a4f5f4f0b9b3e047e6dca86
MD5 a18824d6da4bed40deff52378ad90c9a
BLAKE2b-256 95a0ced7cb40f44afe86f287e257aee8f09758bbc0e6b91c78f554a1d0963be7

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c43308af7013cb60c6f5e77cba2b9ccaed2f5e2ae444b365dce9b7ac3bb5d48f
MD5 0f324553e03c1afcdb67532d8264a566
BLAKE2b-256 b3b9deceed80853a22d7f81c989986f5771b174c129c1aa60acd94b3d7b3ff42

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.10.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ale_py-0.10.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e0637ddc4074b814ae46db28d61aface08d7eba16ea713cdfe0734e0b18c3794
MD5 d85e8f6de3d93562b52d6ecfa9de9cfb
BLAKE2b-256 16eff71fcf7d202ad1546638f5535bd169e71cd143354efbdfe7ae22a767b5ca

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d82d81715f15598b9db50529da971d36117cda027af9d112bd2ea22cefe3bcb
MD5 0d94b8e6872ac86cf50b6d25ad749ff4
BLAKE2b-256 1a08d1fdfd9e8d0b0609d9ed047830a8c076a1aafc037213da36051a7ca47d54

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4dd55a52e074497f1143785a215a50706afba3111be8b4923d46cc507c16be8f
MD5 56ec742ac8ee5d5ba36411b0a6749953
BLAKE2b-256 3dcd75033786eacb9d495c5aeddc425394a9d37104afa2980152504fb594ee61

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 24f7aa19e1b3b1540516942020a95f57964af71285497620e58f03b2c113424e
MD5 62f4c54a02dbd1d41e682976e6dd565f
BLAKE2b-256 20cb618e97c6fa9ca94c996bcc22299d6c0a0461a39a5d42755085c3d29d4f42

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.10.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ale_py-0.10.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c77653e47d79e60abcc21bfad7dd105784ce2649fc5bc4eaaa1de45b40112772
MD5 39374691d2a7e32b2604d26b5c2fa712
BLAKE2b-256 55f09471eee05e95818fbbea1e3aca93d1eeeeabcc64f66f444bf36d9556846c

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f0a3da4ff47f913b5c61e66571fe7fb92fc569e5babdf4b0eeee348aac1d457
MD5 5219a7c0dcb4a58c3f97a95f175bc16d
BLAKE2b-256 a6a1adcc29a2162364046de02c49e65310894c99fd623c1ca871ec1bff082e25

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b84025670cf37527348a417d7465ee193a19d0a336bcd62f943957c13fef6ebb
MD5 90977874ad89a36c6bf9be4ae8781a98
BLAKE2b-256 7b2e93a0c1eeeafa4db76a2a7ae800ae69802365e0ba6300618a23b1791adb79

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 076a44a61c2518b844f765692a91d0a6b383c6592b5fdabd94fd24d4c62a54ef
MD5 0ff44571d08ef1725513d4d32a194afe
BLAKE2b-256 75a51b3fbfb73905b40f7418f5b12356d990d7f5c427d2f5dac53b2910a81c2b

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.10.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ale_py-0.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9fa3f3977f63b685394301432cba7fe417882cfea72424d75aaf6bf98f79a2c9
MD5 0ed9773a3849463b595ca535cb120ea2
BLAKE2b-256 9ef37a7dcc275d6000eec074aa71f6c11d1b4c0381f7d11400b10599c9c4403c

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d4f326236c95736182323a480363c7b98959fc9a4ba09d2aa5b152faa6a2d59
MD5 8011dc12971af13f422d3207ca8b4831
BLAKE2b-256 2edd2abb024d5c39844846590e5c04eac0cd118b6c8c47bc7c268acb526c6580

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f3aaea36c1671812c21b5f7c5dcf9f5f9c726f5b10cbe7a657a844de963bb55
MD5 e279df2f27d07438872739d43accf93c
BLAKE2b-256 edd32d7c9386032b205cb1de6f0ee852627e9b910b561b4f655879e3c4a768c2

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7733d521921452b9e644e9e31e4d5b1ba612305473c5ba0266cafb7eff6a5461
MD5 e087ee01fa7104811e82debad0c9472f
BLAKE2b-256 2908351ecf07b981905397c5c5e7e64035e2a3d2664723c9f987fd9fd107f960

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.10.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ale_py-0.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 43d63b262f4b3bfcd567ce736a5648b4193470b2691bc14e38ac0c05dfe2a7e2
MD5 b3591ea5229d225d3e1375bf07a10f84
BLAKE2b-256 74d1c2440245b377a7165610bd56d0f51a5e49000a7b5700d1e0f50bcf3fe430

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24b9e61a4e868a4266f8a0ef7809cc20cecedb8c10d515d14ff6078950d51d8b
MD5 da25503a29197893c4489cc83b911ab9
BLAKE2b-256 8db6883f4b87c49db9dabc7327e86679b8a29d2bf2b20cb57ab3e440e910c661

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6f91ab4b2a18e24c82a33fd1d616f32d121fcd6429f9045d515960df8cdc580
MD5 4c30dad41f59ee94d1692679ee049feb
BLAKE2b-256 1f78c351f1f6cd97670fe25a96c7d08746b92b41201737f4ff4cc35866194eea

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d3247ad68f7dda1f9c046ede74310e347114f2c191a9f4cd247f432410941eb9
MD5 ac3d2cdb6c4a1cb67edc97ee450caf35
BLAKE2b-256 5fab6412519ca0181a3c1ae66889105784d52d323210f8f142fd224e1fecb34d

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.10.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ale_py-0.10.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 771d5a1cd5a50d2cf226eba45c418fb7a18b453bd332b6a2189310030eda421a
MD5 42fdf8d1d2aff61b0ff2657c16443c2b
BLAKE2b-256 9fc4e57729ad180fcf380325fad451ff1578e800044421454d370d17349cc32f

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12617edc9799c73570df67a731a4293bcfd500f413e0bfa867b53fc411fa7629
MD5 20ec69ee24de0ca3d810166a9b052e84
BLAKE2b-256 9e4a8398d145fb7c337a318c89e6f3ab05bfd99ab1f7116c54dd56f52a78b70f

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 82c676030b8b6543cb6969a905ff841ae6f086a2efe707542d014ef6ca4ada4e
MD5 475a8766db8fd442472663c995210c13
BLAKE2b-256 4e873ecfcb046277bf3fcbb4b54aa9467cd8ad434418b2551eeef64eb34d2a85

See more details on using hashes here.

File details

Details for the file ale_py-0.10.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.10.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c9fac7fe11c56ed301a409d8a940f3e764ed2929b756ebb033eadf492a3d696e
MD5 01148f4aeee249f39eb8c4b76ca925a9
BLAKE2b-256 9367b6178dbf9bb09dba5689f6445a0e67ba649c772f95b09d725cbf8fcc5d54

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page