Skip to main content

Alegant: a elegant training framework

Project description

Alegant

Alegant is an elegant training framework for PyTorch models.

Install Alegant

Before installing Alegant, please make sure you have the following requirements:

  • Python >= 3.7
  • torch >= 1.9

Simple installation from PyPI

pip install alegant

To install Alegant and develop locally:

python setup.py develop

Example

For examples on how to use elegant, please refer to the examples directory in this repository. It contains sample configuration files and code snippets to help you get started.

Usage

To use Alegant, follow the steps below:

  1. Define your Model.
  2. Define your DataModule.
  3. Define your Trainer.
  4. Set your configuration.
  5. Run the training script using the following command:
cd alegant/example
python example_main.py  # for simply use the DataModule and Trainer
python example_runner.py # for using the runner from Alegant

Configuration

To customize the training process, you need to provide a configuration file. This file specifies various parameters such as dataset paths, model architecture, hyperparameters, etc. Make sure to create a valid configuration file before running the framework.

Project Structure

alegant
├── alegant
│   ├── __init__.py
│   ├── runner.py
│   ├── trainer.py
│   ├── data_module.py
│   ├── utils.py
│   └── example
│       ├── data
│       ├── config.yaml
│       ├── example_main.py
│       ├── example_runner.py
│       ├── logs
│       ├── README.md
│       ├── src
│       │   ├── dataset.py
│       │   ├── loss.py
│       │   ├── model
│       │   │   ├── modeling.py
│       │   │   ├── poolers.py
│       │   ├── trainer.py
│       │   └── utils.py
│       └── tensorboard
└── setup.py

Contact

If you have any questions or inquiries, please contact us at zhuhh17@qq.com

Thank you for using Alegant! Happy training!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alegant-1.0.5.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

alegant-1.0.5-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file alegant-1.0.5.tar.gz.

File metadata

  • Download URL: alegant-1.0.5.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.0

File hashes

Hashes for alegant-1.0.5.tar.gz
Algorithm Hash digest
SHA256 213d58a2fd539cfc56525d2768467de5e0a31fd90eb4ca495d2665a3f2309da4
MD5 010cd5af4171aa2c56db21edc7751bc7
BLAKE2b-256 473f95fe32a493c5ef67744cca910ec6693c9ace5da9dc2e661b022c4527be91

See more details on using hashes here.

File details

Details for the file alegant-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: alegant-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 10.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.0

File hashes

Hashes for alegant-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2f72c1a354e587ab2ed30555e4b277dd4009b00bc8c4559624ff7bdd46dc461a
MD5 154187c6ee6f448dbd0c5d7a3d24f39d
BLAKE2b-256 602e7c521e61ecbb5cfa07dba9e02829ee2751ffae7fee3f20908be49f49e320

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page