Skip to main content

ZC proxies calculation repo, altered from foresight package.

Project description

zero-cost-proxies

Independent ZC proxies only for testing on it.

Modified and simplified from foresight repo, fix some bugs in model output, remove some unwanted code snippets.

Supported zc-metrics are:

=========================================================
= grad_norm,                                            =
=-------------------------------------------------------=
= grasp,                                                =
=-------------------------------------------------------=
= snip,                                                 =
=-------------------------------------------------------=
= synflow,                                              =
=-------------------------------------------------------=
= nwot, (NASWOT)                                        =
=       [nwot, nwot_Kmats]                              =
=-------------------------------------------------------=
= lnwot, (Layerwise NASWOT)                             =
=       [lnwot, lnwot_Kmats]                            =
=-------------------------------------------------------=
= nwot_relu, (original RELU based NASWOT metric)        =
=       [nwot_relu, nwot_relu_Kmats]                    =
=-------------------------------------------------------=
= zen,                                                  =
=      Your network need have attribute fn:             =
=         `forward_before_global_avg_pool(inputs)`      =
=      to calculate zenas score                         =
=      (see sample code in tests/test_zc.py)            =
=-------------------------------------------------------=
= tenas,                                                =
=      must work in `gpu` env,                          =
=      might encouter bug on `cpu`.                     =
=      also contains metrics:                           =
= ntk,                                                  =
= lrn,                                                  = 
=-------------------------------------------------------=
= zico, not work in torch-cpu, I will check it later.   =
=     zico must use at least two batches of data,       =
=     in order to calculate cross-batch (non-zero) std  =
=-------------------------------------------------------=
= tcet,                                                 =
= snr-synflow,                                          =
= snr-snip,                                             =
=========================================================

0. How to install.

  1. First create conda env with python version >= 3.6, this repo has been completely tested on python 3.9.

    conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
    
  2. Install torch, torchvision, cudatoolkit.

    Tested on:
    pytorch==1.13.1  (py3.9_cuda11.6_cudnn8.3.2_0)
    python==3.9.16
    cuda 11.6
    torchvision==0.14.1 (py39_cu116)
    torchaudio==0.13.1 (py39_cu116)
    
  3. this repo is perfectly compatible with current mainstream zc testing framework, including zennas, naslib, nb201 related repos, nb101, nb1shot1, blox, etc.

  4. If you still cannot use this repo, try to contact me, or try to setup some mainstream nas testing benchmarks, then most problems would be solved.

  5. Finally, if all the previous basic enviroment requirements are met, then try this lib with just one single command.

    pip install -e .
    # running this command under the root directory where the setup.py locates in.
    
  6. check installation success.

    cd tests/
    python test_zc.py
    

1. Tests

ImageNet16-120 cannot be automatically downloaded. Using script under scripts/download_data.sh to download:

source scripts/download_data.sh nb201 ImageNet16-120
# do not use `bash`, use `source` instead

2. Versions

  • V1.1.2
    Fix bug in tenas, add net instance deep copy to avoid weight changes.
  • V1.1.1
    Fix warnings in tenas, now using new torch api to calc eigenvalue.
    Fix bug in tcet, add net instance deep copy to avoid weight changes, add manually designed tcet copy process, remove bn in synflow, add bn in snip.
  • V1.1.0
    Add tcet metric, which calculates TCET score. Add snr metrics, which calculates SNR family scores.
  • V1.0.10
    add zico metric, which calculates ZICO score.
  • V1.0.9
    fix readme format, no code change.
  • V1.0.8
    fix bug in nwot_relu for wrong for/backward fn register,
    fix bug in zen for missed necessary attribute check, add test sample for zen metric,
    fix bug in zen for return value have not .item() attribute,
    add tenas metric, which calculates TE-NAS score. (tenas, ntk, lrn)
  • V1.0.7
    add zen metric, which calculates ZenNAS score.
  • V1.0.6
    add original naswot implements based on RELU, can be calculated using metirc nwot_relu, also fix potential oom bug, and more reliable GPU memory cache removal code snippets.
  • V1.0.5
    add naswot, lnwot into mats
  • V1.0.4
    fix bugs in calculation, add more test codes.
  • V1.0.3
    add shortcuts to import directly from package root directory.

3. Quick Bug Fix

  1. if you encouther this error:
    RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'

    Traceback (most recent call last):
    File "/home/u2280887/GitHub/zero-cost-proxies/tests/test_zc.py", line 87, in <module>
        test_zc_proxies()
    File "/home/u2280887/GitHub/zero-cost-proxies/tests/test_zc.py", line 49, in test_zc_proxies
        results = calc_zc_metrics(metrics=mts, model=net, train_queue=train_loader, device=device, aggregate=True)
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 115, in calc_zc_metrics
        mt_vals = calc_vals(net_orig=model, trainloader=train_queue, device=device, metric_names=metrics, loss_fn=loss_fn)
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 101, in calc_vals
        raise e
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 73, in calc_vals
        val = M.calc_metric(mt_name, net_orig, device, inputs, targets, loss_fn=loss_fn, split_data=ds)
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/__init__.py", line 42, in calc_metric
        return _metric_impls[name](net, device, *args, **kwargs)
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/__init__.py", line 24, in metric_impl
        ret = func(net, *args, **kwargs, **impl_args)
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 316, in compute_TENAS_score
        RN = compute_RN_score(net, inputs, targets, split_data, loss_fn, num_batch)
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 201, in compute_RN_score
        num_linear_regions = float(lrc_model.forward_batch_sample()[0])
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 170, in forward_batch_sample
        return [LRCount.getLinearReginCount() for LRCount in self.LRCounts]
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 170, in <listcomp>
        return [LRCount.getLinearReginCount() for LRCount in self.LRCounts]
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 93, in getLinearReginCount
        self.calc_LR()
    File "/home/u2280887/miniconda3/envs/zc-alth/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
        return func(*args, **kwargs)
    File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 62, in calc_LR
        res = torch.matmul(self.activations.half(), (1-self.activations).T.half())
    RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
    

    please check your lib installation, we need gpu support for torch.half(), please check your cuda version and pytorch version, and reinstall pytorch with cuda support. It seem current cpu version of pytorch does not support torch.half(), even if we are using float32 not float16.

  2. ....

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alethiometer-1.1.2.tar.gz (32.2 kB view details)

Uploaded Source

Built Distribution

alethiometer-1.1.2-py2.py3-none-any.whl (35.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file alethiometer-1.1.2.tar.gz.

File metadata

  • Download URL: alethiometer-1.1.2.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for alethiometer-1.1.2.tar.gz
Algorithm Hash digest
SHA256 f9ff351d206e947ed9ee66a5c8a636e91ace2f7f3fca581275e772356f93bf5e
MD5 dd90c02c38cf65a85a35eedcb51aa7ce
BLAKE2b-256 0fa3cd0512be53f056ac9a6e0a2c41551cd48c9e696cb5be61286acb32f65ef0

See more details on using hashes here.

File details

Details for the file alethiometer-1.1.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for alethiometer-1.1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 82113052c92171de7ce9dcf1d6cce7877f501bf30bf67fa4f81b5e2b5fb4220d
MD5 b3fc909018ca148e89e1e3fbc745e429
BLAKE2b-256 5075d3364eae10c43eb1b9102f37b56e2ef2040b251c8b9ae2bdcd929e637822

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page