ZC proxies calculation repo, altered from foresight package.
Project description
zero-cost-proxies
Independent ZC proxies only for testing on it.
Modified and simplified from foresight repo, fix some bugs in model output, remove some unwanted code snippets.
Supported zc-metrics are:
=========================================================
= grad_norm, =
=-------------------------------------------------------=
= grasp, =
=-------------------------------------------------------=
= snip, =
=-------------------------------------------------------=
= synflow, =
=-------------------------------------------------------=
= nwot, (NASWOT) =
= [nwot, nwot_Kmats] =
=-------------------------------------------------------=
= lnwot, (Layerwise NASWOT) =
= [lnwot, lnwot_Kmats] =
=-------------------------------------------------------=
= nwot_relu, (original RELU based NASWOT metric) =
= [nwot_relu, nwot_relu_Kmats] =
=-------------------------------------------------------=
= zen, =
= Your network need have attribute fn: =
= `forward_before_global_avg_pool(inputs)` =
= to calculate zenas score =
= (see sample code in tests/test_zc.py) =
=-------------------------------------------------------=
= tenas, =
= must work in `gpu` env, =
= might encouter bug on `cpu`. =
= also contains metrics: =
= ntk, =
= lrn, =
=-------------------------------------------------------=
= zico, not work in torch-cpu, I will check it later. =
= zico must use at least two batches of data, =
= in order to calculate cross-batch (non-zero) std =
=-------------------------------------------------------=
= tcet, =
= snr-synflow, =
= snr-snip, =
=========================================================
0. How to install.
-
First create conda env with python version >= 3.6, this repo has been completely tested on python 3.9.
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
-
Install torch, torchvision, cudatoolkit.
Tested on: pytorch==1.13.1 (py3.9_cuda11.6_cudnn8.3.2_0) python==3.9.16 cuda 11.6 torchvision==0.14.1 (py39_cu116) torchaudio==0.13.1 (py39_cu116)
-
this repo is perfectly compatible with current mainstream zc testing framework, including zennas, naslib, nb201 related repos, nb101, nb1shot1, blox, etc.
-
If you still cannot use this repo, try to contact me, or try to setup some mainstream nas testing benchmarks, then most problems would be solved.
-
Finally, if all the previous basic enviroment requirements are met, then try this lib with just one single command.
pip install -e . # running this command under the root directory where the setup.py locates in.
-
check installation success.
cd tests/ python test_zc.py
1. Tests
ImageNet16-120 cannot be automatically downloaded. Using script under scripts/download_data.sh
to download:
source scripts/download_data.sh nb201 ImageNet16-120
# do not use `bash`, use `source` instead
2. Versions
- V1.1.2
Fix bug intenas
, add net instance deep copy to avoid weight changes. - V1.1.1
Fix warnings intenas
, now using new torch api to calc eigenvalue.
Fix bug intcet
, add net instance deep copy to avoid weight changes, add manually designedtcet
copy process, remove bn in synflow, add bn in snip. - V1.1.0
Addtcet
metric, which calculates TCET score. Addsnr
metrics, which calculates SNR family scores. - V1.0.10
addzico
metric, which calculates ZICO score. - V1.0.9
fix readme format, no code change. - V1.0.8
fix bug innwot_relu
for wrong for/backward fn register,
fix bug inzen
for missed necessary attribute check, add test sample forzen
metric,
fix bug inzen
for return value have not .item() attribute,
addtenas
metric, which calculates TE-NAS score. (tenas
,ntk
,lrn
) - V1.0.7
addzen
metric, which calculates ZenNAS score. - V1.0.6
add originalnaswot
implements based on RELU, can be calculated using metircnwot_relu
, also fix potential oom bug, and more reliable GPU memory cache removal code snippets. - V1.0.5
addnaswot, lnwot
into mats - V1.0.4
fix bugs in calculation, add more test codes. - V1.0.3
add shortcuts to import directly from package root directory.
3. Quick Bug Fix
-
if you encouther this error:
RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
Traceback (most recent call last): File "/home/u2280887/GitHub/zero-cost-proxies/tests/test_zc.py", line 87, in <module> test_zc_proxies() File "/home/u2280887/GitHub/zero-cost-proxies/tests/test_zc.py", line 49, in test_zc_proxies results = calc_zc_metrics(metrics=mts, model=net, train_queue=train_loader, device=device, aggregate=True) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 115, in calc_zc_metrics mt_vals = calc_vals(net_orig=model, trainloader=train_queue, device=device, metric_names=metrics, loss_fn=loss_fn) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 101, in calc_vals raise e File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zc_proxy.py", line 73, in calc_vals val = M.calc_metric(mt_name, net_orig, device, inputs, targets, loss_fn=loss_fn, split_data=ds) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/__init__.py", line 42, in calc_metric return _metric_impls[name](net, device, *args, **kwargs) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/__init__.py", line 24, in metric_impl ret = func(net, *args, **kwargs, **impl_args) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 316, in compute_TENAS_score RN = compute_RN_score(net, inputs, targets, split_data, loss_fn, num_batch) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 201, in compute_RN_score num_linear_regions = float(lrc_model.forward_batch_sample()[0]) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 170, in forward_batch_sample return [LRCount.getLinearReginCount() for LRCount in self.LRCounts] File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 170, in <listcomp> return [LRCount.getLinearReginCount() for LRCount in self.LRCounts] File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 93, in getLinearReginCount self.calc_LR() File "/home/u2280887/miniconda3/envs/zc-alth/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/home/u2280887/GitHub/zero-cost-proxies/alethiometer/zero_cost_metrics/tenas.py", line 62, in calc_LR res = torch.matmul(self.activations.half(), (1-self.activations).T.half()) RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
please check your lib installation, we need gpu support for
torch.half()
, please check your cuda version and pytorch version, and reinstall pytorch with cuda support. It seem current cpu version of pytorch does not supporttorch.half()
, even if we are using float32 not float16. -
....
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file alethiometer-1.1.2.tar.gz
.
File metadata
- Download URL: alethiometer-1.1.2.tar.gz
- Upload date:
- Size: 32.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9ff351d206e947ed9ee66a5c8a636e91ace2f7f3fca581275e772356f93bf5e |
|
MD5 | dd90c02c38cf65a85a35eedcb51aa7ce |
|
BLAKE2b-256 | 0fa3cd0512be53f056ac9a6e0a2c41551cd48c9e696cb5be61286acb32f65ef0 |
File details
Details for the file alethiometer-1.1.2-py2.py3-none-any.whl
.
File metadata
- Download URL: alethiometer-1.1.2-py2.py3-none-any.whl
- Upload date:
- Size: 35.7 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 82113052c92171de7ce9dcf1d6cce7877f501bf30bf67fa4f81b5e2b5fb4220d |
|
MD5 | b3fc909018ca148e89e1e3fbc745e429 |
|
BLAKE2b-256 | 5075d3364eae10c43eb1b9102f37b56e2ef2040b251c8b9ae2bdcd929e637822 |