Skip to main content

A library to estimate bond dissociation energies (BDEs) of organic molecules

Project description

ALFABET logo

PyPI version Build Status

A machine-Learning derived, Fast, Accurate Bond dissociation Enthalpy Tool (ALFABET)

This library contains the trained graph neural network model for the prediction of homolytic bond dissociation energies (BDEs) of organic molecules with C, H, N, and O atoms. This package offers a command-line interface to the web-based model predictions at bde.ml.nrel.gov.

The basic interface works as follows, where predict expects a list of SMILES strings of the target molecules

>>> from alfabet import model
>>> model.predict(['CC', 'NCCO'])
  molecule  bond_index bond_type fragment1 fragment2  ...    bde_pred  is_valid
0       CC           0       C-C     [CH3]     [CH3]  ...   90.278282      True
1       CC           1       C-H       [H]    [CH2]C  ...   99.346184      True
2     NCCO           0       C-N   [CH2]CO     [NH2]  ...   89.988495      True
3     NCCO           1       C-C    [CH2]O    [CH2]N  ...   82.122429      True
4     NCCO           2       C-O   [CH2]CN      [OH]  ...   98.250961      True
5     NCCO           3       H-N       [H]   [NH]CCO  ...   99.134750      True
6     NCCO           5       C-H       [H]   N[CH]CO  ...   92.216087      True
7     NCCO           7       C-H       [H]   NC[CH]O  ...   92.562988      True
8     NCCO           9       H-O       [H]    NCC[O]  ...  105.120598      True

The model breaks all single, non-cyclic bonds in the input molecules and calculates their bond dissociation energies. Typical prediction errors are less than 1 kcal/mol. The model is based on Tensorflow (2.x), and makes heavy use of the neural fingerprint library (0.1.x).

For additional details, see the publication: St. John, P. C., Guan, Y., Kim, Y., Kim, S., & Paton, R. S. (2020). Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nature Communications, 11(1). doi:10.1038/s41467-020-16201-z

Note: For the exact model described in the text, install alfabet version 0.0.x. Versions >0.1 have been updated for tensorflow 2.

Installation

Installation with conda is recommended, as rdkit can otherwise be difficult to install

$ conda create -n alfabet -c conda-forge python=3.7 rdkit
$ source activate alfabet
$ pip install alfabet
``

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alfabet-0.2.2.tar.gz (27.3 kB view details)

Uploaded Source

Built Distribution

alfabet-0.2.2-py3-none-any.whl (10.6 kB view details)

Uploaded Python 3

File details

Details for the file alfabet-0.2.2.tar.gz.

File metadata

  • Download URL: alfabet-0.2.2.tar.gz
  • Upload date:
  • Size: 27.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for alfabet-0.2.2.tar.gz
Algorithm Hash digest
SHA256 0c06f1c90cd82595b424ec09a30b32f289bdde5a252435cc015f2e68b6ffc181
MD5 2ce149215b9478973c59e6d3d158112c
BLAKE2b-256 62cc283b9ad16b95b6c5a6abf728e9e02080643a58dfaf9a516e9b574d70392b

See more details on using hashes here.

Provenance

File details

Details for the file alfabet-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: alfabet-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 10.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for alfabet-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 321e57a73609c2a9926da10031e59157a5f4c848629f842919156e26f3368611
MD5 22d83c0edbfce5284adc45159865830e
BLAKE2b-256 39ab8c104adb331245763d1032ff994f0a697ac70adcebf49476b8dc8652d145

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page