Skip to main content

A library to estimate bond dissociation energies (BDEs) of organic molecules

Project description

ALFABET logo

PyPI version Build Status

A machine-Learning derived, Fast, Accurate Bond dissociation Enthalpy Tool (ALFABET)

This library contains the trained graph neural network model for the prediction of homolytic bond dissociation energies (BDEs) of organic molecules with C, H, N, and O atoms. This package offers a command-line interface to the web-based model predictions at bde.ml.nrel.gov.

The basic interface works as follows, where predict expects a list of SMILES strings of the target molecules

>>> from alfabet import model
>>> model.predict(['CC', 'NCCO'])
  molecule  bond_index bond_type fragment1 fragment2  ...    bde_pred  is_valid
0       CC           0       C-C     [CH3]     [CH3]  ...   90.278282      True
1       CC           1       C-H       [H]    [CH2]C  ...   99.346184      True
2     NCCO           0       C-N   [CH2]CO     [NH2]  ...   89.988495      True
3     NCCO           1       C-C    [CH2]O    [CH2]N  ...   82.122429      True
4     NCCO           2       C-O   [CH2]CN      [OH]  ...   98.250961      True
5     NCCO           3       H-N       [H]   [NH]CCO  ...   99.134750      True
6     NCCO           5       C-H       [H]   N[CH]CO  ...   92.216087      True
7     NCCO           7       C-H       [H]   NC[CH]O  ...   92.562988      True
8     NCCO           9       H-O       [H]    NCC[O]  ...  105.120598      True

The model breaks all single, non-cyclic bonds in the input molecules and calculates their bond dissociation energies. Typical prediction errors are less than 1 kcal/mol. The model is based on Tensorflow (2.x), and makes heavy use of the neural fingerprint library (0.1.x).

For additional details, see the publication: St. John, P. C., Guan, Y., Kim, Y., Kim, S., & Paton, R. S. (2020). Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nature Communications, 11(1). doi:10.1038/s41467-020-16201-z

Note: For the exact model described in the text, install alfabet version 0.0.x. Versions >0.1 have been updated for tensorflow 2.

Installation

Installation with conda is recommended, as rdkit can otherwise be difficult to install

$ conda create -n alfabet -c conda-forge python=3.7 rdkit
$ source activate alfabet
$ pip install alfabet
``

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alfabet-0.3.0.tar.gz (27.5 kB view details)

Uploaded Source

Built Distribution

alfabet-0.3.0-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file alfabet-0.3.0.tar.gz.

File metadata

  • Download URL: alfabet-0.3.0.tar.gz
  • Upload date:
  • Size: 27.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for alfabet-0.3.0.tar.gz
Algorithm Hash digest
SHA256 c2dfaaa1ca7520d8677dd3952bc5d77fbeb40c294e8e2b0a928f14be30c5b222
MD5 934cbd119cb7e3b8ef2e3b24f6423523
BLAKE2b-256 e6e2fd18755c1279bafc16ed5810d33548924f04c604e8bf7e528209ace704f5

See more details on using hashes here.

Provenance

File details

Details for the file alfabet-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: alfabet-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for alfabet-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e13726988f5c004657b37c882b3d1bdcf3cd17b33ce08222ba318a5ba76dba5f
MD5 aee5ee771150f83b25fde9ea12080e52
BLAKE2b-256 eff5fea8ae86916cf1b9d9eec6a6a3fd283da49d7ba14eff1e55221a7625a4a1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page