Skip to main content

Simple python wrapper for alfred5 workflow / snippets

Project description

🎩 AlfredClient

Simplest Alfred Client that I use my own projects.

Usage

pip install alfred5
  • Projects dir structure
    • Put your codes and requirements.txt to src folders
    • Install alfred5 via
      pip install alfred5 --target=src/libs
      
    • Add the top of the main.py
          import sys
      
          sys.path.insert(0, "src/libs")
      
      • main
    • If u want to use different --target for ex . use WorkflowClient.run(packagedir=".")
    • Sample of default structure:
      • structure
    • If u install all of requirements, dont need to create requirements.txt file in src
    • If you use vscode, add the code that below to .vscode/settings.json to debug your file
      • vscode
      {
          "python.analysis.extraPaths": [
              "./src/libs"
          ],
          "python.analysis.exclude": [
              "./src/libs"
          ]
      }
      
  • Via SnippetsClient API create custom snippets programmaically
  • Via WorkflowClient API create custom alfred workflow
    • Craete requirements.txt file for your python project to let alfred5 installs them if needed 🙃
    • To install from requirements.txt do all import packages inside main - Use global keyword to access imported packages globally
      • client.query is the query string
      • client.page_count is the page count for pagination results
    • Dont need to add alfred5 to requirements.txt
  • Use WorkflowClient.log to log your message to alfred debugger
  • Use WorkflowClient(main, cache=True) method to use caching system
    • Just do it for static (not timebased nor any dynamic stuff) response
    • Db path is db/results.yml also you can see it from workflow debug panel

⭐️ Example Project

alt

from re import sub
from urllib.parse import quote_plus
import sys

sys.path.insert(0, "src/libs")

from alfred5 import WorkflowClient


async def main(client: WorkflowClient):
    # To auto install requirements all import operation must be in here
    global get
    from requests import get

    query = client.query
    client.log(f"my query: {query}")  # use it to see your log in workflow debug panel

    # (use cache=True) Use cache system to quick response instead of old style that below
    # if client.load_cached_response():
    #     return

    char_count = str(len( query))
    word_count = str(len(query.split(" ")))
    line_count = str(len(query.split("\n")))

    encoded_string = quote_plus(query)
    remove_dublication = " ".join(dict.fromkeys(query.split(" ")))

    upper_case = query.upper()
    lower_case = query.lower()
    capitalized = query.capitalize()
    template = sub(r"[a-zA-Z0-9]", "X", query)

    client.add_result(encoded_string, "Encoded", arg=encoded_string)
    client.add_result(remove_dublication, "Remove dublication", arg=remove_dublication)
    client.add_result(upper_case, "Upper Case", arg=upper_case)
    client.add_result(lower_case, "Lower Case", arg=lower_case)
    client.add_result(capitalized, "Capitalized", arg=capitalized)
    client.add_result(template, "Template", arg=template)
    client.add_result(char_count, "Characters", arg=char_count)
    client.add_result(word_count, "Words", arg=word_count)
    client.add_result(line_count, "Lines", arg=line_count)
    
    # (use cache=True) to cache result for query instead of old style that below
    #     if u work with static results (not dynamic; coin price etc.)
    # client.cache_response()  

if __name__ == "__main__":
    WorkflowClient.run(main)  # WorkflowClient.run(main, cache=True)

🔰 How to Create Workflow

insturaction1 insturaction2 insturaction3 insturaction4

🪪 License

Copyright 2023 Yunus Emre Ak ~ YEmreAk.com

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alfred5-1.1.6.tar.gz (64.1 kB view details)

Uploaded Source

Built Distribution

alfred5-1.1.6-py3-none-any.whl (62.2 kB view details)

Uploaded Python 3

File details

Details for the file alfred5-1.1.6.tar.gz.

File metadata

  • Download URL: alfred5-1.1.6.tar.gz
  • Upload date:
  • Size: 64.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for alfred5-1.1.6.tar.gz
Algorithm Hash digest
SHA256 33849f1306a84cdd2aec486f250a03be5914fa11bfd0ec3bb5cb0cf94c750b62
MD5 50c629a397a4ca3b7dfa556281fe0138
BLAKE2b-256 a124749a20e80d13183d2de68dbbdb3edded900addc81abebcb3c7d7edcf8b13

See more details on using hashes here.

File details

Details for the file alfred5-1.1.6-py3-none-any.whl.

File metadata

  • Download URL: alfred5-1.1.6-py3-none-any.whl
  • Upload date:
  • Size: 62.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for alfred5-1.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 e95dd9ada5fcf68f96356ba49cc845b2500f9686b36ebbfcd12cbdaae02e829f
MD5 2c25a3d8a9ba61da6f60be790543b566
BLAKE2b-256 4645e799e1a75dcee70dbfd98f3a1e50db6bc48c5def5d74dd7a1a61fe54579d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page