Skip to main content

A package containing various matching algorithms, such as stable marriage, hospital-residents, and student-project allocation.

Project description

Algmatch

A package containing various two-sided matching algorithms.

  • SM: Stable Marriage (both man and woman optimal)
  • HR: Hospital Residents (both residents and hospital optimal)
  • SPA-S: Student Project Allocation with lecturer preferences over students (both student and lecturer optimal)
  • SPA-P: Student Project Allocation with lecturer preferences over projects (requires Gurobi)
    • for usage, see this notebook.

Requires Python 3.10 or later.

Format data according to the guidelines in this folder.

Installation

Simply run pip install algmatch.

Usage

To import a specific algorithm, use from algmatch import <algorithm>, e.g. from algmatch import SPAS or from algmatch import StudentProjectAllocation. Create a file or dictionary with your instance, following the guidelines in the DATA_FORMAT_GUIDELINES folder. For example,

Importing data:

from algmatch import HR, SM, SPAS

spas_instance = {
    'students': {
        1: [1, 2],
        2: [2, 3],
        3: [3, 1],
        4: [4, 1]
    },
    'projects': {
        1: {
            'capacity': 1,
            'lecturer': 1
        },
        2: {
            'capacity': 1,
            'lecturer': 1
        },
        3: {
            'capacity': 1,
            'lecturer': 2
        },
        4: {
            'capacity': 1,
            'lecturer': 2
        }
    },
    'lecturers': {
        1: {
            'capacity': 2,
            'preferences': [3, 1, 2, 4]
        },
        2: {
            'capacity': 2,
            'preferences': [2, 4, 3]
        }
    }
}

spas_student = SPAS(dictionary=spas_instance, optimisedSide="students")
spas_lecturer = SPAS(dictionary=spas_instance, optimisedSide="lecturers")

Getting the stable matchings:

spas_2_student_stable_matching = spas_2_student.get_stable_matching()
spas_2_lecturer_stable_matching = spas_2_lecturer.get_stable_matching()

print("SPA 2 student stable matching:")
print(spas_2_student_stable_matching)

print("SPA 2 lecturer stable matching:")
print(spas_2_lecturer_stable_matching)
SPA student stable matching:
{'student_sided': {'s1': 'p1', 's2': 'p2', 's3': 'p3', 's4': 'p4'}, 'lecturer_sided': {'l1': ['s1', 's2'], 'l2': ['s3', 's4']}}
SPA lecturer stable matching:
{'student_sided': {'s1': 'p2', 's2': 'p3', 's3': 'p1', 's4': 'p4'}, 'lecturer_sided': {'l1': ['s1', 's3'], 'l2': ['s2', 's4']}}

See more example usage here.

Further details

  • All algorithms check for blocking pairs and return a stable matching if no blocking pair is found, and None otherwise
  • All algorithms implemented (barring SPA-P) have verification testing
    • Tested by producing random instances
    • File to brute force all stable matchings
    • Check algorithm is generating correct stable matchings

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page