Algebraic Number Theory package
Project description
![travis](https://travis-ci.org/louisabraham/algnuth.svg?branch=master)
Algebraic Number Theory package
Louis Abraham and Yassir Akram
Installation
pip install –upgrade algnuth
or get the development version with:
pip install –upgrade git+https://github.com/louisabraham/algnuth
Features
### Jacobi symbol
` pycon >>> from algnuth.jacobi import jacobi >>> jacobi(3763, 20353) -1 `
### Solovay-Strassen primality test
` pycon >>> from algnuth.jacobi import solovay_strassen >>> p = 12779877140635552275193974526927174906313992988726945426212616053383820179306398832891367199026816638983953765799977121840616466620283861630627224899026453 >>> q = 12779877140635552275193974526927174906313992988726945426212616053383820179306398832891367199026816638983953765799977121840616466620283861630627224899027521 >>> n = p * q >>> solovay_strassen(p) True >>> solovay_strassen(q) True >>> solovay_strassen(n) False `
### Quadratic forms
` pycon >>> from algnuth.quadratic import * >>> display_classes(-44) x^2 + 11⋅y^2 2⋅x^2 + 2⋅xy + 6⋅y^2 3⋅x^2 - 2⋅xy + 4⋅y^2 3⋅x^2 + 2⋅xy + 4⋅y^2 >>> display_primitive_forms(-44) x^2 + 11⋅y^2 3⋅x^2 - 2⋅xy + 4⋅y^2 3⋅x^2 + 2⋅xy + 4⋅y^2 >>> display_ambiguous_classes(-44) x^2 + 11⋅y^2 2⋅x^2 + 2⋅xy + 6⋅y^2 >>> display(*reduced(18, -10, 2)) 2⋅x^2 + 2⋅xy + 6⋅y^2 `
### Real polynomials
` pycon >>> from algnuth.polynom import Polynomial >>> P = Polynomial([0] * 10 + [-1, 0, 1]) >>> print(P) X^12-X^10 >>> P(2) 3072 >>> P.disc 0 >>> P.sturm() # Number of distinct real roots 3 >>> P.r1 # Number of real roots with multiplicity 12 `
### Modular arithmetic
` pycon >>> P = Polynomial([1, 2, 3]) >>> Pmodp = P % 41 >>> print(Pmodp ** 3) 27⋅X^6+13⋅X^5+22⋅X^4+3⋅X^3+21⋅X^2+6⋅X+1 >>> print((P ** 3) % 41) 27⋅X^6+13⋅X^5+22⋅X^4+3⋅X^3+21⋅X^2+6⋅X+1 `
### Polynomial division
` pycon >>> A = Polynomial([1, 2, 3, 4]) % 7 >>> B = Polynomial([0, 1, 2]) % 7 >>> print(A) 4⋅X^3+3⋅X^2+2⋅X+1 >>> print(B) 2⋅X^2+X >>> print(A % B) 5⋅X+1 >>> print(A // B) 2⋅X+4 >>> print((A // B) * B + A % B) 4⋅X^3+3⋅X^2+2⋅X+1 `
### Berlekamp’s factorization algorithm
` pycon >>> P = Polynomial([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) >>> Pmodp = P % 41 >>> print(Polynomial.ppfactors(Pmodp.factor())) 12⋅(X+31)⋅X⋅(X^2+40⋅X+24)⋅(X^2+36⋅X+13)⋅(X^6+34⋅X^5+26⋅X^4+13⋅X^3+25⋅X^2+26⋅X+35) `
### Unique Factorization of Ideals
` pycon >>> from algnuth.ideals import factorIdeals >>> factorIdeals(Polynomial([4, 0, 0, 1])) X^3+4 mod 2 = X^3 (2) = (2, α)^3 X^3+4 mod 3 = (X+1)^3 (3) = (3, α+1)^3 X^3+4 mod 5 = (X+4)⋅(X^2+X+1) (5) = (5, α+4)⋅(5, α^2+α+1) `
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file algnuth-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: algnuth-0.0.3-py3-none-any.whl
- Upload date:
- Size: 8.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7c2c5b1e70ea7337dc36a4400a4320acfc4e54213024da5b26d77173c61d086 |
|
MD5 | 9fd6ae3cd3bded989c7d99a3f413258d |
|
BLAKE2b-256 | a7e2a7d427276dc976c40637c818e95c62adb9846dd2ccb7101b57f0ffb65450 |